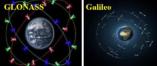
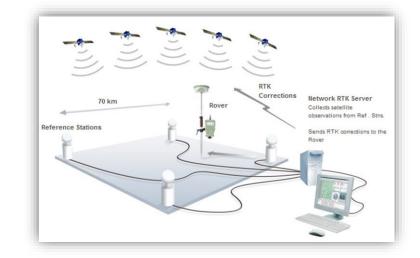
Servicio de Posicionamiento GNSS en Tiempo Real de España

Experiencias de los Servicios de Posicionamiento GNSS en Tiempo Real, vigentes en la región SIRGAS y contribuciones a nivel global


José Manuel Serna [IGN, RIG] 9 de abril de 2024

WHAT IS SPTR? How can it help us?

Mobile


Navigation

Geomatics

Earthquake Monitoring

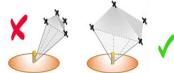
Aviation

cm accuracy in real time!

> 12500 users.

> 750 simultaneous users daily. Many different activity areas.

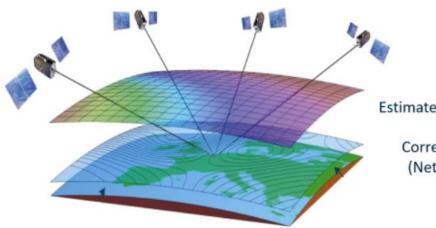
A multi-constellation receiver: GPS, GLONASS, GALILEO and BEIDOU.


The use of other constellations in addition to GPS, results in there being a larger number of satellites in the field of view, which has the following **benefits**:

•Reduced signal acquisition time.

- •Improved position and time accuracy.
- •Reduction of problems caused by obstructions such as buildings and foliage.
- •Improved spatial distribution of visible satellites, resulting in improved dilution of precision.
- •Redundancy is built into the solution. If a signal is blocked due to the working environment, there is a very high likelihood that the receiver can simply pick up a signal from another constellation, ensuring solution continuity.
- •While extremely rare, if a GNSS system fails, there are other systems available.

To determine a position in **GPS-only** mode, a receiver must track a <u>minimum of four satellites</u>. In **multiconstellation** mode, the receiver must track <u>five satellites</u>, at least one of which must be from a satellite in the other constellation, so the receiver can determine the time offset between constellations.



1-2cm

mm

5-10m

Corrected by Augmentation-

Estimated by Rover (PPP / PPP-AR) Or Corrected by Augmentation (Network-RTK & PPP-RTK)

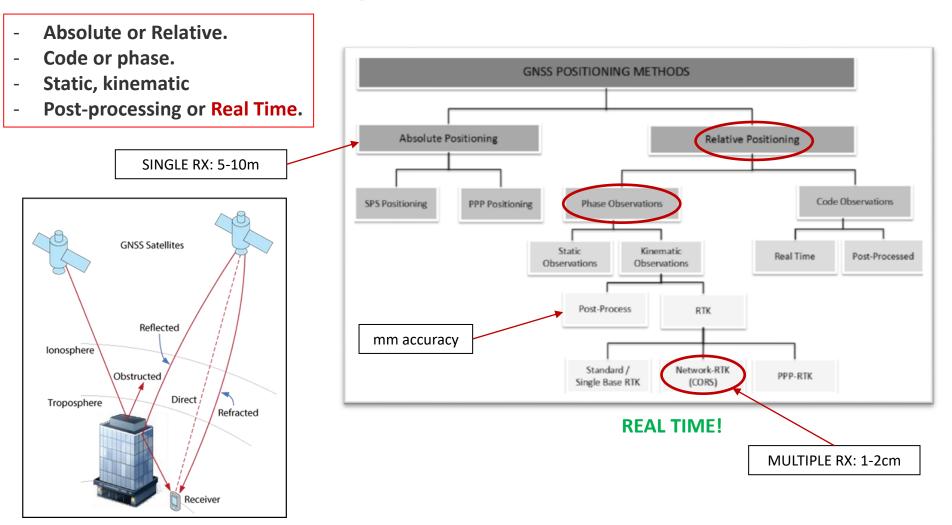
Corrected by Calibration

Current Research

Satellite error sources

- orbits (0.2 .. 5 m)
- atomic clocks (0.2 .. 10 m)
- Hardware code biases (0 .. 1 m)
- Hardware phase biases (0 .. 2 Pi)
- Satellite antenna PCV + GDV

Signal delays by


- Ionosphere (0,5 .. 100 m)
- Troposphere (0 .. 2 m)
- Water vapour (0 .. 0,5 m)

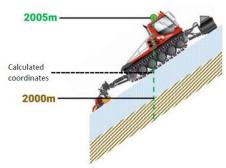
Receiver error sources

- Receiver Antenna (mm to m)
- Multipath Nearfield
- Multipath Farfield

GNSS observation modes: accuracy thresholds

GNSS APPLICATIONS

- Cartography.
- Topography.
- Geodesy.
- Cadastre and property.
- GIS (Geographic Information System).
- Construction.
- Agriculture.


Different levels of accuracy required

Future...TODAY!

- 5G
- Autonomous navigation

- ...

	53%
motive ation for DAS	Heavy Machinery Machine control.

Network RTK (NRTK)

Distance dependant 70 km

Reference Stations

CORS

Accurately known position, transmit their data to a control center in real-time

NETWORK SOLUTIONS SINGLE STATION SOLUTIONS

Receives and processes the data of the stations in real-time, <u>ambiguity</u> <u>fixing</u> phase for all satellites of each permanent station and calculating ionospheric and tropospheric delays, clock biases, etc.

CONTROL CENTER

Network RTK Server Collects satellite observations from Ref . Stns.

RTK

Rover

4V

Corrections

Sends RTK corrections to the Rover

Data latency < 2-3s

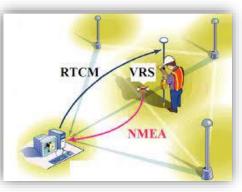
NTRIP protocol (RTCM through TCP/IP) Server + client + caster

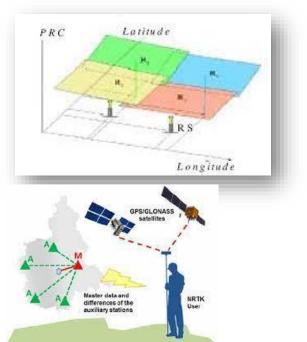
Network real time error modelling (ambiguities resolution).

NRTK solutions

The error modelling depends on the distance station-rover (baseline). Up to 80-100km.

<u>Advantages</u>:


- Only rover receiver neccessary (no base station). <u>Network of reference stations</u>.
- **Homogenous** accuracy in the network area (1-2cm), worse in height.
- 80-100km baseline (depending on the software).
- Corrections availability and reliability improved.
- Not neccessary to know the closest reference station.


Drawbacks:

- Communications availability.

Main solutions:

- VRS (virtual reference station).
- FKP (Flächen Korrectur Parameter).
- MAC (master auxiliary concept).
- CERCANA and SINGLE POINTS.

- Read carefully **receiver** error messages to help understanding the problem.
- Incorrect receiver setup parameters (IP, port, mountpoint, user and password).
- Reference station too far away.
 - Difficulty to solve ambiguities.
 - Mainly when connected to single station corrections. Better using network solutions.
 - Higher time necessary to solve ambiguity.

- Internet connection.

- Bandwidth: net overloading.
- Poor internet coverage.
- Interferences.
- Cell jump.
- Corrections latency too high.
 - Time between GNSS signal generation and correction arrival to the rover (<3-4s).
- Monofrequency/low quality antenna in **low cost receivers** (smartphones, drones...).
- Dark areas and moving rover (cycle-slips, ambiguity fixing lost).
- SPTR down, reference station down.

CORE: IGN - ERGNSS network

122 stations

29 inside worldwide networks.

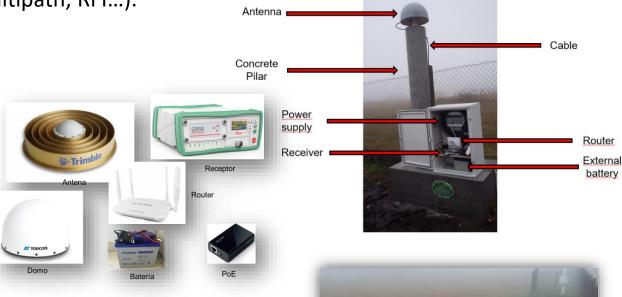
Multiconstellation

Others:

- CCAA
- Puertos del estado
- EUREF

IGS

The performance of a NRTK infrastructure can be improved realizing a <u>correct design of the</u> <u>network</u>, in term of CORSs interdistances and geometrical distribution. Considering the quality of the GNSS products used in a NRTK as precise ephemerids and the quality of algorithms devoted to estimate the phase ambiguity, inter-distances can be extended up to 100 kms.



Permanent stations network

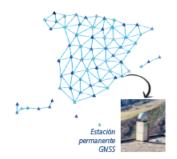
- Antenna + receiver + communications system + power supply system.
- Good location (visibility, Multipath, RFI...).
- Stability, integrity.
- Antenna calibration.
- Antenna height nivelation.
- FTP: RINEX (hour, day).
- TCP/IP: real time.

Position known with very high accuracy

- Scientific reasearch: geodynamics.
- Reference frame stablishment.
- Atmospheric modelling.
- Network RTK.

ARP

Subnetworks architecture

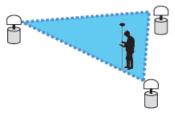


¿Cómo se asegura el servicio en toda España?

Con más de 250 estaciones de referencia

Comunidades Autónomas, Puertos del Estado e Instituto Geográfico Nacional (IGN) han puesto en común sus estaciones GNSS para proporcionar un servicio de posicionamiento de precisión para toda España que es suministrado por el IGN.

- ERGNSS: Red Geodésica Nacional de Estadones de referencia GNSS del Instituto Geográfico Nacional
- ARAGEA: Red de Geodesia Activa de Aragón
- ERVA: Red de Estadones de Referencia de Valenda
- ITACYL: Red de estaciones GNSS de Castilla y León
- RAP: Red Andaluza de Posicionamiento
- REGAM: Red de Geodesia Activa de la Región de Murcia
- REP: Red Extremeña de Posicionamiento
- RGAC: Red GNSS Activa de Cantabria
- RGAN: Red de Geodesia Activa de Navarra
- RGAPA: Red GNSS Activa del Principado de Asturias
- RGE: Red GPS/GNSS de Euskadi
- RGM: Red de estadones GNSS de la Comunidad de Madrid
- RIOJA: Red de estadones permanentes GNSS La Rioja
- XGAIB: Xarxa de Geodèsia Activa de les Illes Balears


¿Qué ofrece el SPTR?

Si dispone de un dispositivo GPS/GNSS que admita correcciones a la posición y una conexión a Internet, puede utilizar cualquiera de los dos tipos de soluciones que ofrece el servicio:

Solución con el conjunto de red

Las correcciones enviadas son generadas a partir de modelos que se alimentan de los datos registrados por todas las estaciones permanentes de la red. El servicio ofrece varias técnicas para la generación de las correcciones, como son MAC, VRS, FKP o CERCANA.

Esta es la solución más recomendable dado que su precisión es homogénea en todo el territorio y no exige conocer la estación permanente más próxima a la ubicación del dispositivo GNSS.

Solución con estación única (punto simple)

Las correcciones son calculadas utilizando una única estación permanente de referencia. En este caso, el usuario ha de indicarla explícitamente.

Su precisión es menor a medida que el dispositivo GNSS se aleje respecto a la estación permanente de referencia. Por ello es recomendable utilizar la más próxima.

¿Cómo conectarse?

El acceso al servicio requiere registro previo para obtener un usuario y contraseña. Puede registrarse a través de la siguiente URL en su navegador:

http://ergnss.ign.es/gnuserportal/

O en su dispositivo móvil a través del siguiente código QR:

Dependiendo del tipo de solución que elija, deberá configurar su dispositivo GNSS con los parámetros requeridos:

Solución con el conjunto de Red

URL: ergnss-tr.ign.es

IP: 192.148.213.42

Puerto: 2101

Punto de montaje: Ejemplos válidos pueden ser cualquiera de los siguientes:

- GPS+GLONASS+GALILEO+BEIDOU (RTCM3.2,MSM): MAC3M, VRS3M, FKP3M, CERCANA3M
- GPS+GLONASS (RTCM3.1): MAC3, VRS3, FKP3, CERCANA3

Solución con estación única o punto simple

URL: ergnss-tr.ign.es

IP: 192.148.213.42

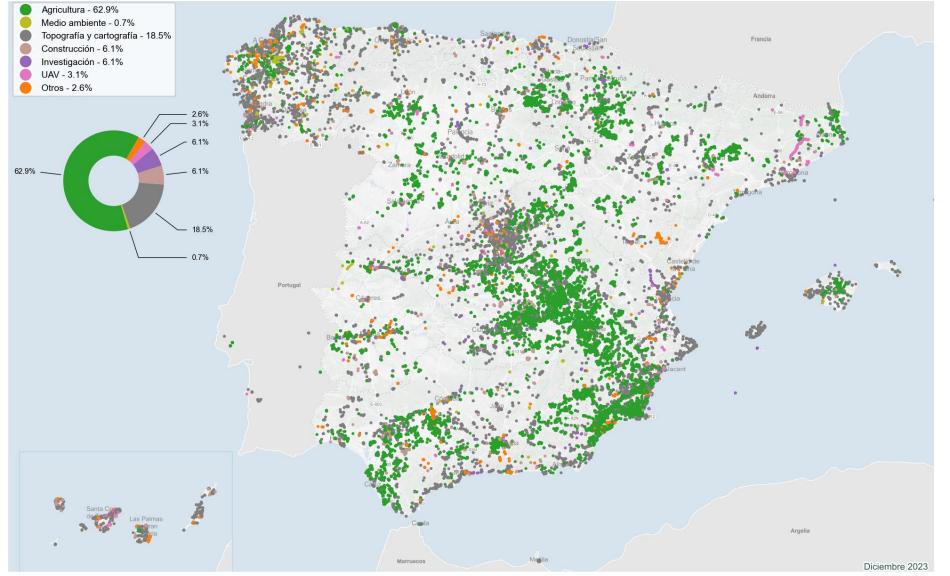
Puerto: 2102

Puntos de montaje (RTCM3.2,MSM): Nombre de la estación de 4 caracteres, seguido de 3M (ejemplos: IGNE3M, ALBA3M,...)

Userportal

Menu				Admi	nistra	tion - Strean	S					
∎≓ Home	+ 🖊	⊳ • X	+	<u>+</u> Q								
admin												
🕶 🏫 User Management	Mountpoint	Identifier	Format	Format Details	Carrier	Nav System	Country	Latitude	Longitude	Height	NMEA	Solut
▼ 🛓 Profiles (all)	ABAN3	ABAN	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	38,18000	-1,05000	207,8000		0
Administrator	ACAL3	ACAL	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	37,73000	-0,86000	67,4000		0
Crganization	ACIN3	ACIN	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	40,41000	-1,44000	1178,3500	V	0
User	ACNS3	ACNS	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	41,70000	-6,35000	871,2500	¥	0
Services	ACOR3	ACOR	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	43,36000	-8,40000	66,9000	¥	0
Reports	AGRD3	AGRD	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	41,85000	-1,93000	1010,8300	¥	0
	AIO23	AIO2	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	39,06000	-1,06000	662,8690	V	0
Exports i Administration	AIRM3	AIRM	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	37,81000	-1,13000	253,9900	V	0
	AJAL3	AJAL	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	41,22000	-2,27000	884,1700	V	0
Infos	ALAC3	ALAC	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	38,34000	-0,48000	60,3500		0
Groups	ALBA3	ALBA	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	38,98000	-1,86000	751,6800	V	0
Services	ALBO3	ALBO	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	35,94000	-3,03000	62,2600		0
Areas	ALC13	ALC1	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 1020(120)	2	GPS+GLONASS	ESP	41,05800	-0,14530	397,6600	V	0
≈ Streams	ALCA3	ALCA	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 10	quipam	iento Geográfico	de X	Servicio o	de Posicionamient	to en T X -	E.	
Networks	ALDA3	ALDA	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 102	-11							
N Casters	ALGC3	ALGC	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 10:148.2			rtal/#f_l	ogin_geopp				
Settings	ALHA3	ALHA		1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 107	A PEDR	0 Y 💋 De	scargar P	eliculas (et) E	ilitetorrent - Desc	a 💁 Traduo	ctor de	Googl
	ALIA3	ALIA	RTCM3	1004(1), 1006(10), 1008(30), 1012(1), 1019(120), 102	-	icio do	Dec	icionar	diamba .	an Tion		
			$\neg \neg$		erv	icio de	POS	sicionan	niento e	en nen	ipc) R

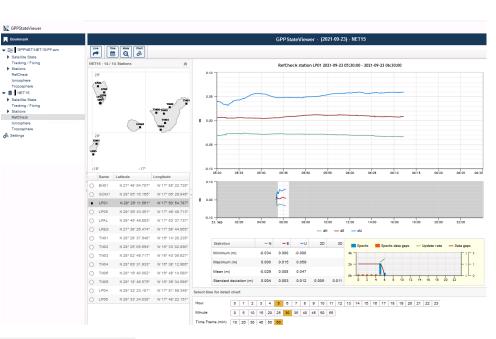
- Users registration
- Administrator system management


http://ergnss.ign.es/gnuserportal

SPTR users activity areas (December 2023)

Monitoring and maintenance

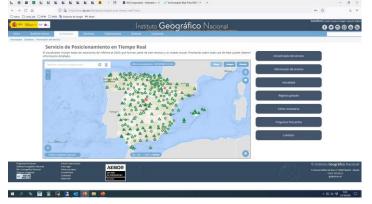
GNSMART2 tools

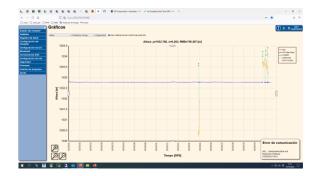

GNERROR, GNALERT, DFMON, GNIP, RXODELAY, CASTERS status

GNSMON

USERPORTAL

GPPStateviewer


ERGNSS BASE STATIONS DATA MONITORING NETWORKS MONITORING



Laboratory Rx Field monitoring

VISOR_IGN

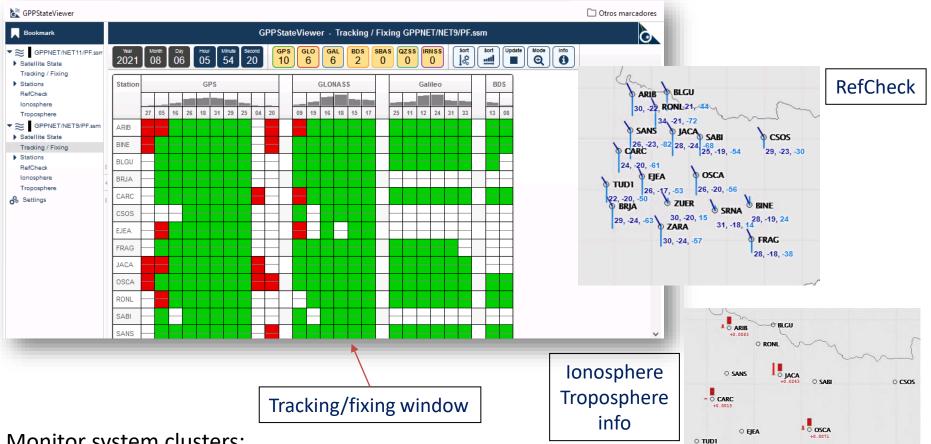
RTKNAVI - BNC

GPPReceiver

SPTR input_servers

To show the current status of the GNSMART system some Java web services are available. These web services must run within a Java servlet container. The GNSMART installer provides Apache Tomcat for this task. The GNSMART web services are provided as web archive files (*.war).

More information: skyplot satellites information, pseudorange correction, observation details (pseudorange, phase, doppler, signal strength, loss of lock), receiver information.


GPPStateViewer

O ZUER

O ZARA

O BRIA

Monitor system clusters:

-Stations ambiguity resolution for each satellite/each constellation.

-Refcheck, ionosphere, troposphere for each station.

O BINE

O FRAG

O SRNA -0.0350

SPTR: Network monitoring

- Rovers status/ - CORS status/in

Reference Station Details General Information

Ref ID: RTCM ID: # SVs: Latitude [°]: Longitude [°]:

Height [m]: Net ID:

Satellite State

GPS

10

All

21

17

4

Tracked

∃ Details

GLO

6

5

GAL

5

5

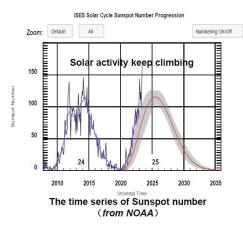
0

No FKP

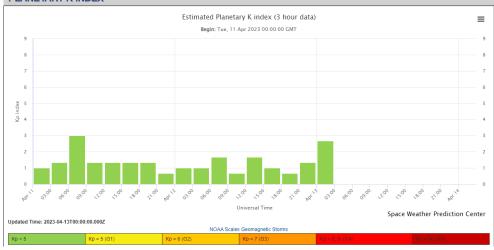

										UN	SHON		
	Filter by		93 <mark>–</mark> 19 ed RTK Float	DGPS Mode Not Fixed	244 I 0 23 Online		O O No Data	8 Offline	•				
/info nfo										Toulouse	Montpellier Marseilie		
МОТА		×			Por	tugal A				Barcelona	2		
21					Portug		· ~ -	10000					
N 39° 30'	11.55181"	1000			Lisboa			pain 🛆 🐉					
W 2° 52' 1	2.02939"				A TES	AA		A A 4	$\Delta \Delta^{-}$				
						1-				Rover Details			×
779.8269 (m	100				.2.		4 44		General Information		Sho	w Rover history
						-		tála 🗛 🔹 🗛		Rov ID	admin	Reference	
						1	-			GPUID		Ref ID	BUIT
							4	A	-	PGPPUID	admin_5938,CASTER_IGN	Mode	Single Station
							الطوان 🛃			Organization		Net ID	
BDS S	SBAS QZSS IRN	SS SS					12h -		A No.	Fix State	4 - RTK with fixed Ambiguities	Latitude [°]	N 41° 00' 02.18409"
						11	11.1	1730		# SVs	15	Longitude [°]	W 3° 38' 12.70666"
0	000	J				14-	77.2	1	WAY	Latitude [°]	N 41° 00' 02.18407"	Height [m]	1032.70050 m
					Lei	JIRabat OO	افاس 🔹 🗧	es nac	RUL	Longitude [°]	W 3° 38' 12.70662"	RTCM	
						ار البيضاء	JiCasablanca	+0//0++8EN2	IN+	Height [m]	1032.7830 m	Out ID	
					T.	MAG	RAND	1 1	> 11	HDOP	0.7	Туре	RTCM3
		5			A ANY	CI NA			15/	Elapsed since last Msg. [s]	1.0	True Reference	
		9			آم Safi معني		2 3		16 5	NMEATypes	1		
					11.12	Moroc	co ech EQQoRC	1		Rover Ref ID	0	Latitude [°]	N 41° 00' 02.18409"
					1 the the	33	R Com	1 1		User Agent	NTRIP Trimble NtripClient/2.0	Longitude [°] Height [m]	W 3° 38' 12.70666" 1032.70050 m
					Sto F. I	X	L	13 - Y		Address	192.168.193.189:61761		0.0
					Agadir o	ROAIO	51	-1 1		GLONASS Bias Class	TRM	True Distance [km]	0.0
		0				n	3/			Time		Satellite State	
			6	-	1º Ly	~ .	2 ·			OBrowser Timezone ISO-Da		All GPS GLO	GAL BDS SBAS QZSS IRNSS
	and the second			9	13 200	ser	1		X	Login	2021-08-05 14:26:39	27 10 6	5 6 0 0 0
	A				21				~ 1	Last Message	2021-08-06 06:07:01		5 5
	e e e e e e e e e e e e e e e e e e e	A	Man	Gran Canana	1			Algeria	P	Elapsed since Login	15h 40' 21"		0 1
			cas remaside	Changedrand					1	Elapsed since last Message	00h 00' 10"	Tracked FKP N	lo FKP
										Timestamp in last Message	06:06:42		

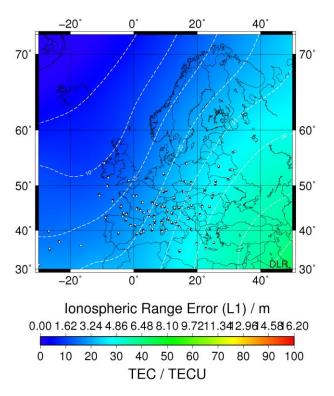
GNSMON

http://192.148.213.42:8009/gnsmon_servlet


SPTR: Network monitoring

IONOSPHERE – SOLAR ACTIVITY


- The 25th solar cycle is approaching its peak year, which is expected to be 2024-2028
- The occurrence and amplitude of ionospheric anomalies will be significantly increased


Solar activities is the main driver of ionospheric variations

Total Electron Content (TEC)

2023-04-13 05:45:00 UT

IGN-SPTR FUTURE?

- Service in the state of the art (infrastructure, SW).
- Support spanish R&D teams to develop AVs technologies.
- SSR?
 - **Global mass-market applications.** _

.

... and transfer them to

the processing center.

Reference stations

0

0

0

receive GNSS signals.

- **OSR:** scaling up difficulties. _
- SSR: allows to broadcast GNSS corrections. -

Observation State Representation (OSR)

Rovers transmit their

approximate location to

centimeter-level accuracy

two-way communication

local coverage

high bandwidth

Reference stations

 (\oplus)

5)

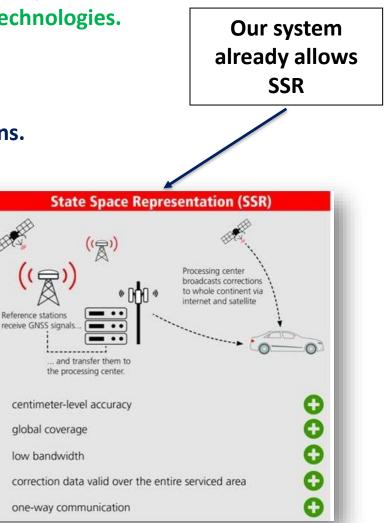
7

(t)

.03

the processing station

center...


... and receive a GNSS

correction stream tailored

to their specific locations.

correction data tailored to a single location

Broadcasting: NTRIP, Satellite, DAB+...

Geo++: GNSMART https://www.geopp.de/gnsmart/

Trimble: **PIVOT** <u>https://www.trimble.com/Real-Time-Networks/Trimble-Pivot-Platform.aspx</u>

Leica: SPIDER

https://leica-geosystems.com/es-es/products/gnss-reference-networks/software/leica-gnss-spider

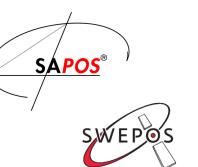
Topcon: **TopNet+**

https://www.topconpositioning.com/office-software-and-services/reference-network-software/topnet

Norway: **CPOS** <u>https://www.kartverket.no/en/on-land/posisjon/guide-to-cpos</u>

Germany: **SAPOS** <u>https://www.sapos-bw.de/</u>

Sweden: SWEPOS https://swepos.lantmateriet.se/


Finland: GNSS-Finland service https://gnss-finland.nls.fi/#/map

Hungary: **GNSSnet.hu** <u>https://www.gnssnet.hu/index.php?r=site%2Frealtime</u>

ealtime GN

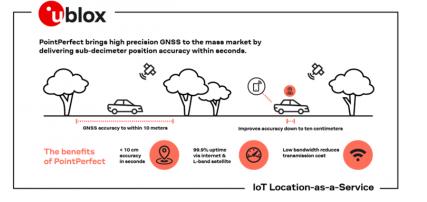
REPUBLIC OF ESTONIA

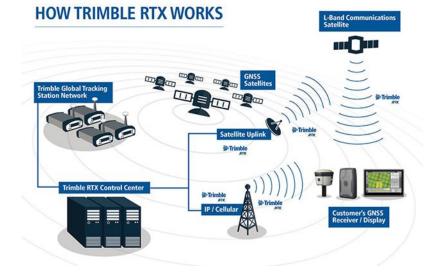
Estonia: **ESTPOS** https://geoportaal.maaamet.ee/eng/Spatial-Data/Geodetic-Data/Geodetic-Networks/ESTPOS-p671.html

Private companies GNSS correction services

Hexagon: HxGN SmartNet https://hxgnsmartnet.com/es-ES/home/services/Network-RTK

Trimble: VRS Now


https://www.allterra-iberica.es/wp-content/uploads/2019/01/ficha-tecnica-vrs-now-allterra-iberica.pdf


Topcon: TopNet Live

https://www.topconpositioning.com/office-software-and-services/gnss-correction-services/topnet-livecorrections

U-blox: PointPerfect

https://www.u-blox.com/en/product/pointperfect

Thank you ¿Questions?

SPTR web page: https://www.ign.es/web/ign/portal/gds-gnss-tiempo-real

User Portal: http://ergnss.ign.es/gnuserportal

Contact email: buzon-geodesia@mitma.es