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1. Introduction 

Terrestrial reference frames supporting precise positioning based on global navigation 

satellite systems (GNSS) must be consistent with the reference frame in which the GNSS 

orbits are determined. At present, the conventional reference frame is the ITRF 

(International Terrestrial Reference Frame, http://itrf.ensg.ign.fr/), which is computed and 

maintained by the International Earth Rotation and Reference Systems Service (IERS, 

www.iers.org). According to the IERS conventions (Petit and Luzum 2010), the International 

GNSS Service (IGS, www.igs.org) determines and provides the GNSS satellite ephemeris 

referring to the ITRF (Dow et al. 2009). Users applying IGS orbits for precise (differential) 

GNSS positioning have to introduce coordinates of terrestrial reference stations referring also 

to the ITRF. The accessibility to this reference frame at regional and local levels is 

guaranteed through continental densifications of the global frame and subsequent national 

densifications of these continental frames. Following this hierarchy, SIRGAS (Sistema de 

Referencia Geocéntrico para las Américas, www.sirgas.org) is realized by a regional 

densification of the ITRF in Latin America and the Caribbean (Brunini et al. 2011), and it is 

further extended to each country by the national reference networks. 

The present realization of SIRGAS is a network of about 250 continuously operating stations 

covering Latin America and the Caribbean. This so-called SIRGAS-CON network is weekly 

processed to generate  

a) loosely constrained solutions of station positions for further combinations of the 

network (e.g. integration into the IGS polyhedron, computation of multi-year 

solutions), and  

b) weekly station positions aligned to the same reference frame in which the GNSS 

satellite orbits are computed (i.e. ITRF, IGS reference frame) to be used as reference 

coordinates in GNSS positioning.  

Due to the large number of stations, the analysis strategy of SIRGAS-CON is based on the 

combination of individual solutions of different sub-networks (Brunini et al. 2011). For this 

purpose, the SIRGAS-CON stations are divided in (Fig. 1):  

a) One core network (SIRGAS-CON-C) with 112 stations distributed over the whole 

continent, and  

b) different densification sub-networks (SIRGAS-CON-D) distributed regionally on the 

northern, middle, and southern part of the continent.  

These sub-networks are individually processed by the SIRGAS Processing Centres (see 

Section 3): the core network is computed by DGFI, the other sub-networks by the SIRGAS 

Local Processing Centres: CEPGE (Ecuador), CIMA (Argentina), CPAGS-LUZ (Venezuela), 

IBGE (Brazil), IGAC (Colombia), IGN (Argentina), INEGI (Mexico), and SGM (Uruguay). The 

weekly combination of the individual solutions is carried out by the SIRGAS Combination 

Centres: DGFI and IBGE. The distribution of the SIRGAS-CON stations within the SIRGAS 

Processing Centres guarantees that each station is included in three solutions.  

http://itrf.ensg.ign.fr/
http://www.iers.org/
http://www.igs.org/
http://www.sirgas.org/
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Fig. 1. SIRGAS-CON-C core and SIRGAS-CON-D densification sub-networks (status June 2011). 

This operational infrastructure is possible thanks to the active participation of many Latin 

American and Caribbean institutions, who not only make available the measurements of their 

stations, but also are operating SIRGAS Analysis Centres in charge of processing the 

observational data on a routine basis. 

As responsible for the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS 

RNAAC SIR, Seemüller and Drewes 2008), DGFI has to deliver loosely constrained weekly 

solutions of the SIRGAS-CON network to the IGS. These solutions are combined together 

with those generated by the other IGS Global and Regional Analysis Centres to form the IGS 

polyhedron. The processing of the SIRGAS-CON network in the frame of the IGS RNAAC SIR 

also includes the computation of weekly coordinate solutions aligned to the ITRF and 

cumulative (multi-year) position and velocity solutions for estimating the kinematics of the 

network. Until 31 August 2008 (GPS week 1495), DGFI processed the entire SIRGAS-CON 
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network in one block (Sánchez et al. 2010a). Afterwards, with the introduction of the core 

network and the densification sub-networks within SIRGAS-CON, as well as the installation of 

SIRGAS Processing Centres under the responsibility of Latin American institutions, DGFI is 

now responsible for processing the SIRGAS-CON-C core network, combining this core 

network with the densification sub-networks (SIRGAS-CON-D), and making available the final 

SIRGAS products. 

According to this, the present report summarizes the activities carried out by DGFI as IGS 

RNAAC SIR after the SIRGAS 2010 General Meeting, i.e. from 2010-09-05 (GPS week 1600) 

to 2011-06-18 (GPS week 1640).  

2. Routine analysis of the SIRGAS-CON-C core network 

The SIRGAS-CON-C core network (Fig. 1) is composed by 112 stations homogeneously 

distributed over Latin America and the Caribbean. The processing strategy is based on the 

double difference approach using the Bernese Software V. 5.0 (Dach et al. 2007) and follows 

the IGS (Kouba 2009) and SIRGAS guidelines (SIRGAS 2011). The main characteristics are 

(compare with Seemüller et al. 2011):  

a) Elevation mask and data sampling rate are set to 3° and 30 s, respectively. 

b) Absolute calibration values for the antenna phase centre corrections published by the 

IGS are applied (http://igscb.jpl.nasa.gov/igscb/station/general/pcv_archive/). 

c) Satellite orbits, satellite clock offsets, and Earth orientation parameters are fixed to 

the combined IGS weekly solutions (Dow et al. 2009, http://igscb.jpl.nasa.gov/igscb/ 

product/). 

d) Phase ambiguities for L1 and L2 are solved by applying the quasi ionosphere free 

(QIF) strategy of the Bernese Software (Dach et al. 2007). 

e) Periodic site movements due to ocean tide loading are modelled according to the 

FES2004 ocean tide model (Letellier 2004). The corresponding values are provided by 

M.S. Bos and H.-G. Scherneck at http://129.16.208.24/loading/. 

f) The Niell (1996) dry mapping function is applied to map the a priori zenith delay 

(~ dry part), which is modelled using the Saastamoinen model (1973). The wet part 

of the zenith delay is estimated at a 2 hours interval within the network adjustment 

and it is mapped using the Niell wet mapping function. 

g) Daily free normal equations are computed by applying the double difference strategy 

(Bernese Software 5.0, Dach et al. 2007). The baselines are created taking into 

account the maximum number of common observations for the associated stations. 

h) Daily free normal equations are combined for computing a loosely constrained weekly 

solution for station positions (all station coordinates are loosely constrained to 1 m). 

i) Stations with large residuals in the weekly combination (more than ±20 mm in the N-

E component, and more than ±30 mm in the height component) are reduced from 

the normal equations. Steps (h) and (i) are iterative. Fig. 2 shows RMS values for the 

daily coordinate repeatability in the weekly solutions. 

http://igscb.jpl.nasa.gov/igscb/station/general/pcv_archive/
http://igscb.jpl.nasa.gov/igscb/%20product/
http://igscb.jpl.nasa.gov/igscb/%20product/
http://129.16.208.24/loading/
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j) The DGFI loosely constrained solutions are made available to be combined with the 

corresponding solutions delivered by the other SIRGAS Processing Centres. They are 

given in SINEX format and are identified with the name DGFwwww7.SNX: DGF 

stands for DGFI, wwww for the GPS week, and 7 for including the seven days of the 

week. They are available at ftp://ftp.sirgas.org/pub/gps/SIRGAS/. 

k) According to the IGS procedures, the IGS05 reference frame was used until the GPS 

week 1631 (2011-04-16). Since GPS week 1632 (2011-04-17), the IGS08 reference 

frame is used (see IGS messages [IGSMAIL-6354], [IGSMAIL-6355], [IGSMAIL-6356]).  

 

Fig. 2. Daily coordinate repeatability in the DGFI loosely constrained weekly solutions for the SIRGAS-

CON-C core network. Mean RMS values are: North: 1,9 mm, East: 2,0 mm, height: 5,6 mm. 

The 112 core stations are not always included in all weeks because some of them are at 

present inactive or the corresponding RINEX are not available on time (between the two 

following weeks after observation). Fig. 3 shows the number of stations processed in the 

weekly solutions between 2010-09-05 (GPS week 1600) and 2011-06-18 (GPS week 1640). 

It varies between 84 and 92 stations. 

 

Fig. 3. Number of stations included in the weekly solutions of the  

SIRGAS-CON-C core network processed by DGFI. 

To evaluate the quality of the DGFI weekly solutions for the SIRGAS-CON-C core network, 

the following steps are carried out: 

a) Each loosely constrained weekly solution is aligned to the IGS reference frame (the 

IGS05 until GPS week 1631, the IGS08 for the following weeks). In this case, the 

geodetic datum is defined by constraining the IGS reference stations (Fig. 1) to their 

positions computed within the IGS weekly combinations (igsyyPwwww.snx). To 

minimize network distortions, the reference coordinates are introduced with a weight 

ftp://ftp.sirgas.org/pub/gps/SIRGAS/
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inversely proportional to ±1E-04 m. The obtained standard deviation is understood as 

the formal error of the station positions within the weekly solutions. 

b) Residual time series of station positions are computed. For this purpose, the loosely 

constrained weekly solutions are aligned to the latest SIRGAS multi-year solution 

(SIR10P01, Seemüller et al. 2010) using a 7-parameter similarity transformation. 

Then, coordinate time series are generated for each station and mean RMS values 

are derived from the weekly residuals. This procedure is helpful to identify outliers or 

jumps of the stations that may cause network deformations within the weekly 

solutions. Jumps caused by the earthquakes are excluded from this statistics. 

The mean formal error (standard deviation) of the weekly solutions is estimated in ±1,6 mm. 

The weekly repeatability (mean RMS values from residual time series) for the entire period (41 

weeks) is N = 1,5 mm, E = 1,6 mm, and h = 4,3 mm. Just for comparison, the weekly 

repeatability for the previous period (2009-06-28 to 2010-09-04, 63 GPS weeks) is N = 1,5 mm, 

E = 2,2 mm, and h = 4,4 mm (Sánchez et al. 2010b).  

3. Combination of the individual solutions for the SIRGAS-CON network 

The SIRGAS Processing Centres deliver loosely constrained weekly solutions for different 

sub-networks of SIRGAS-CON stations (Table 1). In these solutions, satellite orbits, satellite 

clock offsets, and Earth orientation parameters are fixed to the final weekly IGS values (Dow 

et al. 2009) and coordinates for all sites are loosely constrained to 1 m. These individual 

contributions are integrated in a unified solution by the SIRGAS Combination Centres: DGFI 

and IBGE. The DGFI combination strategy corresponds to (Sánchez et al. 2011b): 

a) Individual solutions are reviewed/corrected for possible format problems, station 

inconsistencies, utilization of erroneous equipment, etc. 

b) Datum constraints included in the delivered normal equations are removed. In this 

way, unconstrained (condition free, non-deformed) normal equations with correct 

station information are available for combination. 

c) Individual normal equations are separately solved with respect to the same IGS 

stations used for the GPS orbit computation (the so-called IGS reference frame, 

http://igscb.jpl.nasa.gov/network/refframe.html). In this case, the IGS reference 

station positions are constrained to the IGS weekly coordinates (igsyyPwwww.snx). 

According to the IGS procedures, the IGS05 reference frame was used until GPS week 

1631 (2011-04-16). Since GPS week 1632 (2011-04-17), the IGS08 reference frame is 

used (see IGS messages [IGSMAIL-6354], [IGSMAIL-6355], [IGSMAIL-6356]).  

d) Station positions obtained in (c) for each sub-network are compared with the IGS 

weekly values and among each other to identify possible outliers. 

e) Stations with large residuals (more than ±10 mm in the North or East components, 

and more than ±20 mm in the height component) are reduced from the normal 

equations. Steps (c), (d), and (e) are iterative. 

f) Variances obtained in the final computation of step (c) are analysed to estimate variance 

factors for relative weighting of the individual solutions (see below item 4.1.5). 

http://igscb.jpl.nasa.gov/network/refframe.html
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Table 1. SIRGAS processing centres and distribution of the SIRGAS-CON stations in sub-networks.  

CEPGE (ECU), Ecuador  CIMA (CIM), Argentina  CPAGS-LUZ (LUZ), Venezuela  

   

Centro de Procesamiento de datos GNSS 
del Ecuador, Instituto Geográfico Militar. 
Software: BERNESE. 

Centro de Procesamiento Ingeniería-
Mendoza-Argentina, Universidad Nacional 
de Cuyo. Software: BERNESE 

Centro de Procesamiento y Análisis GNSS 
SIRGAS de la Universidad del Zulia. 
Software: BERNESE 

Selected sites of the northern and middle 
networks, 77 stations, 60 of them active. 
GPS weeks: 1600-1640. 

Southern network and selected sites of 
the middle network, 111 stations, 100 of 
them active. GPS weeks: 1600-1640. 

Northern network, 115 stations, 85 of 
them active. GPS weeks: 1600-1640. 

IBGE (IBE); Brazil  IGAC (IGA), Colombia IGN-Ar (GNA), Argentina  

   

Instituto Brasileiro de Geografia e 
Estatistica. Software: BERNESE 

Instituto Geográfico Agustín Codazzi. 
 Software: BERNESE 

Instituto Geográfico Nacional.  
Software: GAMIT/GLOBK 

Middle network and selected sites of the 
southern network, 142 stations, 129 of 
them active. GPS weeks: 1600-1640. 

Northern network, 115 stations, 85 of 
them active. GPS weeks: 1600-1640. 

Southern network, 59 stations, 55 of 
them active. GPS weeks: 1617-1640.  

INEGI (INE), Mexico  SGM (URY), Uruguay  DGFI (DGF), Germany  

   

Instituto Nacional de Estadística y Geografía. 
Software: GAMIT/GLOBK 

Servicio Geográfico Militar. 
Software: BERNESE 

Deutsches Geodätisches Forschungsintitut. 
Software: BERNESE 

Selected sites of the northern network, 
37 stations, 32 of them active. GPS 
weeks: 1617-1640. 

Southern network and selected sited of 
the middle network, 77 stations, 71 of 
them active. GPS weeks: 1600-1640. 

Core network, 112 stations, 91 of them 
active. GPS weeks: 1600-1640. 
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g) Once inconsistencies and outliers are reduced from the individual free normal 

equations, a combination for a loosely constrained weekly solution of station positions 

(all station coordinates constrained to 1 m) is computed. This solution is submitted 

to IGS for the global polyhedron and stored to be included in the next multi-year 

solution of the SIRGAS reference frame. 

h) Finally, a weekly solution aligned to the IGS reference frame is computed. As in step 

(c), the geodetic datum is defined by constraining the coordinates of the IGS 

reference stations to their positions computed within the IGS weekly combinations 

(igsyyPwwww.snx). The applied constraints guarantee that the coordinates of the IGS 

reference stations do not change more than ±1,5 mm within the SIRGAS-CON 

adjustment. This solution provides the final weekly positions for the SIRGAS-CON 

stations. Table 2 summarizes the IGS reference stations applied for the solution of 

the combined SIRGAS weekly normal equations. 

Table 2. IGS reference stations used for estimating the SIRGAS weekly station positions. 

IGS05 stations: GPS 
weeks: 1600 - 1631 

IGS08 core stations: 
since GPS week 1632 

Comments (see [IGSMAIL-6354], 
[IGSMAIL-6355], [IGSMAIL-6356]) 

ASC1 ASC1 Inactive since Feb. 2006 

-- BOGT  

BRAZ BRAZ  

-- BRFT  

-- BRMU  

CHPI --  

CONZ CONZ  

CORD -- Decommissioned in May 2006 

CRO1 CRO1  

GLPS GLPS No data since Dec. 2010 

GOLD GOLD  

-- GUAT  

ISPA ISPA  

LPGS LPGS  

MANA --  

MDO1 MDO1  

OHI2 OHI2  

PIE1 --  

-- PALM  

-- PARC  

SANT --  

SCUB SCUB  

UNSA UNSA  

VESL VESL  

 

i) The accumulation and solution of the normal equations are carried out with the 

Bernese Software V.5.0 (Dach et al. 2007). 

j) Resulting files of these procedures are: 

SIRwwww7.SNX: SINEX file of the loosely constrained weekly combination. 

SIRwwww7.SUM: Report of weekly combination. 

siryyPwwww.snx: SINEX file for the combination aligned to the IGS reference frame. 

siryyPwwww.crd: SIRGAS-CON station positions for week wwww. 

The loosely constrained combinations as well as the weekly SIRGAS-CON coordinates 

are available at ftp://ftp.sirgas.org/pub/gps/SIRGAS/ or at www.sirgas.org. 

ftp://ftp.sirgas.org/pub/gps/SIRGAS/
http://www.sirgas.org/
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Before the weekly combinations of the SIRGAS-CON network computed by DGFI are 

published or made available to users, a quality control is carried out to guarantee 

consistency and reliability of the SIRGAS products. This quality control is described in the 

following section. 

4. Quality control carried out by DGFI in the weekly 

combinations for the SIRGAS-CON network 

The generation of the weekly SIRGAS-CON products (i.e. loosely constrained combinations 

and station positions aligned to the IGS reference frame) at DGFI includes a quality control 

at two levels: Firstly, the individual solutions delivered by the SIRGAS Processing Centres are 

analysed to establish their quality and consistency. This includes a survey about the date of 

delivering, processed stations, log file observance, etc. Once the individual solutions are 

reviewed and free of inconsistencies (e.g. in antenna type or eccentricities), their 

combination is carried out by applying the procedure summarized in Section 3. Then, the 

second quality control concentrates on the results of this combination. Here, the main 

objective is to ascertain the accuracy and reliability of the weekly solutions for the entire 

SIRGAS-CON network. The procedures, analysis, and conclusions contained in this report are 

based on the weekly solutions summarized in Table 1.  

4.1 Evaluation of individual solutions 

4.1.1. Punctuality on delivering weekly solutions 

According to the SIRGAS 2008 Resolutions (Brunini and Sánchez 2008), the SIRGAS 

Processing Centres shall deliver their weekly solutions to the IGS RNAAC SIR (i.e 

DGFI) in the third week after observation. In the same way, the SIRGAS Combination 

Centres shall report their results in the fourth week after observation. In general, 

these punctuality requirements are satisfied. Fig. 4 shows the corresponding statistics 

classified in three main time tables: on time (solutions delivered according to the 

SIRGAS agreement), delayed (solutions delivered during the following week after 

deadline), and late (solutions delivered after two or more weeks after deadline). 

4.1.2 Compatibility with log files 

The SIRGAS-CON stations included in the individual solutions shall be identified by the 

4-character code together with the IERS domes number, and the station information 

(receiver, antenna, height of the antenna, etc.) shall precisely correspond to the 

station information contained in the log files. In general, all Processing Centres satisfy 

these requirements. The few inconsistencies found under this topic were appropriately 

corrected. 

4.1.3 Identification of outliers 

To avoid deformations in the combined network, stations with very large outliers 

(more than ±50 mm in any component) are reduced from the weekly normal 

equations. The identification of these outliers is carried out by transforming the 
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contributing normal equations to identical a-priori values and generating time series 

for station coordinates. The loosely constrained weekly solutions delivered by each 

Processing Centre are aligned to the IGS reference frame by constraining the positions 

of the IGS reference stations (Table 2) to the values determined within the IGS weekly 

solutions (Dow et al. 2009). After that, coordinate time series are generated for each 

station included in the individual solutions. In this way, if one station is processed by 

three Processing Centres, three different time series for the same station are available. 

By comparing the time series among each other, it is easier to identify outliers and 

their possible causes: if outliers, jumps, or interruptions are identifiable in the different 

series, the problems may be individually associated to the station (tracking 

deficiencies, equipment changes, failure of the data submission, earthquakes, etc.). If 

outliers, jumps, or interruptions are not present in all the time series, the deficiencies 

may be associated to administrative issues (neglecting of stations, incomplete 

download of RINEX files, disagreement with the log files, etc.). In this step, a few 

outliers were identified and the corresponding stations were reduced from the normal 

equations before combination. 

 

Fig. 4. Percentage of solutions delivered on time, delayed, or late by the SIRGAS 
Analysis Centres (GPS weeks 1600 to 1640). IBGE combinations between GPS weeks 

1618 and 1633 were not delivered. 

 4.1.4 Quality control of the individual solutions 

The consistency between the different individual solutions is evaluated by means of 

(Sánchez et al. 2008): 

a) Mean standard deviations of station positions after solving the individual solutions 

with respect to the IGS reference frame. These values represent the formal errors 

of the individual solutions (Fig. 5). 

b) Weekly repeatability (mean RMS values from residual time series) of station 

positions for each Processing Centre to assess the individual precision of the weekly 

solutions (Fig. 6). 

c) Comparison with the IGS weekly coordinates for common stations to estimate the 

reliability (accuracy) of the individual solutions (Fig. 7). 
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Fig. 5. Weekly standard deviations obtained after solving the individual normal equations with respect 

to the IGS reference stations (see Table 2). 

 

Fig. 6. Weekly repeatability of station positions 
within the individual solutions delivered by the 

SIRGAS Processing Centres (mean RMS values for 
GPS weeks 1600 to 1640). 

 

Fig. 7. Mean RMS values of the residuals after 
comparing the individual SIRGAS solutions with 

the IGS weekly coordinates (mean values for GPS 

weeks 1600 to 1640). 

 
Fig. 8. Comparison of the individual solutions for the period 2009-06-28 (GPS week 1538) to  

2010-09-04 (GPS week 1599), Sánchez et al. 2010b (modified). Left: weekly repeatability of station 

positions (equivalent to Fig. 6); right: consistency with the IGS stations (equivalent to Fig. 7). 

Fig. 5, 6 and 7 summarize the results. The main comments are: 

a) The CIMA solutions present an important improvement since week 1619; the mean 

standard deviation of these solutions for GPS weeks 1600 to 1618 is ±1,8 mm, while 

from GPS week 1619 to 1640 it is ±1,5 mm.  

b) The standard deviations estimated for the IGAC and CPAGS-LUZ solutions are 

practically identical, because they are processing the same network using the same 
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strategy, and software. The small differences between them are caused by the 

occasional omission of any station in one of both solutions. 

c) The variance factor (relationship between a-posteriori and a-priori variance) included 

in the weekly solutions delivered by IGN-Ar (denomination GNA) is always around 1. 

In consequence, the standard deviation obtained after solving the normal equations 

with respect to the IGS stations is also (almost) constant (around ±2,0 mm). 

d) With exception of IBGE, Processing Centres applying the Bernese Software (Table 1) 

present mean standard deviations of about ~±1,6 mm. The reason for the larger 

standard deviations (~±1,8 mm) estimated within the IBGE solutions is still unknown. 

This shall be further investigated.  

e) Here accuracy is understood as the measure of a solution difference with respect to the 

IGS global network, while precision is interpreted as the solution repeatability over time. 

In this way, RMS values derived from station position time series (Fig. 6) represent the 

precision of the individual solutions and the RMS values derived after the comparison 

with the IGS weekly coordinates (Fig. 7) represent the accuracy of those solutions. RMS 

values obtained for both criteria are very similar (about ±1,5 mm in the North and the 

East, and ±3,8 mm in the height); this indicates that the weekly solutions provided by 

the SIRGAS Processing Centres are homogeneously precise and accurate. 

f) The best accuracy estimates in the vertical component (about ±2,8 mm) are 

delivered by the Processing Centres applying GAMIT/GLOBK, i.e. IGN-Ar and INEGI. 

This can be a consequence of  

i) the sub-networks processed by IGN-Ar and INEGI are smaller than the sub-

networks processed by the other Analysis Centres; 

ii) the stations processed by IGN-Ar and INEGI show a very low occurrence of 

seasonal variations;  

iii) only 25 weekly solutions of these two Processing Centres are included in this 

report (they are official SIRGAS Processing Centres since January 2011);  

iv) particularities of the processing strategy by applying the GAMIT/GLOBK package.  

In order to identify the reason of this “best estimate” in the height component, it is 

necessary to extend the comparison analysis to a longer period (at least 2,5 years). 

g) Sánchez et al. (2010b) mentioned that the reliability of the East component in the 

INEGI solutions was a bit poor in comparison with the other individual solutions (Fig. 

8). In order to establish whether this depends on the geometry of the network 

processed by INEGI (elongated geometry in the N-S direction and located on the N-W 

corner of the SIRGAS region), it was suggested to add some additional SIRGAS-CON 

stations located in Central America and the Caribbean. In this way, the network 

would be extended to the East presenting a similar extension in both, N-S and E-W 

directions. The INEGI staff followed this recommendation and included 10 more 

stations. The new results show that the extended network present homogeneous 

precision in the North and the East component and a better agreement with the other 

individual solutions (Fig. 7). 
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4.1.5 Validation of the stochastic models 

The relative weighting of individual solutions by means of variance factors is necessary 

to compensate possible differences in the stochastic models of the Processing Centres. 

In the SIRGAS-CON weekly combination, these variance factors are calculated from the 

mean standard deviations obtained after solving the individual normal equations with 

respect to the IGS reference frame and are given with respect to the major SIRGAS-

CON-C core network (i.e. DGFI solution). Table 3 summarizes standard deviation values 

and variance factors computed for the weekly combinations covered by the considered 

period (GPS weeks 1600 - 1640).  

Table 3. Variance factors computed for relative weighting of individual  

solutions in the weekly combination of the SIRGAS-CON sub-networks 
(mean values for the GPS weeks 1600 - 1640). 

Processing 
Centre 

Standard deviation () after 

solving the individual normal 
equations wrt IGS reference 

frame [mm] 

Variance  
factor 

(DGFI/PC) 

Max Min 
 

DGFI 1,66 1,58 1,0 

CIMA 1,94 1,66 0,9 

CEPGE 1,92 1,59 1,0 

GNA 2,00 2,00 0,8 

IBGE 1,86 1,75 0,9 

IGAC 1,66 1,57 1,0 

INEGI 2,25 1,95 0,8 

LUZ 1,66 1,57 1,0 

SGM 1,63 1,53 1,0 

 

4.2 Evaluation of combined solutions 

The evaluation of the weekly combinations carried out by the DGFI is based on the following 

criteria (Sánchez et al. 2011b): 

a) Mean standard deviation for station positions after aligning the network to the IGS 

reference frame indicates the formal error of the final combination; 

b) RMS values after combining the weekly individual solutions provides information 

about the internal consistency of the combined network; 

c) Time series analysis of station coordinates allows to determine the compatibility of 

the combined solutions from week to week;  

d) Comparison with the IGS weekly coordinates (igsyyPwwww.snx) indicates the 

consistency with the IGS global network; 

e) Comparison with the IBGE weekly combination (ibgyyPwwww.snx) as external control 

and to fulfil the required redundancy for the generation of the SIRGAS products. 
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Fig. 9 presents mean values of the different criteria for the period covering the GPS weeks 1600 

to 1640. The mean standard deviation of the combined solutions agrees quite well with those 

computed for the individual contributions (Fig. 5), i.e. the quality of the individual solutions is 

maintained and their combination does not deform or damage the accuracy of the entire 

SIRGAS-CON network. The coordinate repeatability in the weekly combinations provides an 

estimate of the precision (internal consistency) of about 1,0 mm in the horizontal component 

and about 2,9 mm in the vertical one. The RMS values derived from the time series for station 

coordinates and with respect to the IGS weekly coordinates indicate that the reliability (accuracy) 

of the network is about 1,7 mm in the horizontal position and 3,7 mm in height.   

 

Fig. 9. Quality of the DGFI combinations following different evaluation criteria 
(mean values for the GPS weeks 1600 - 1640). 

Regarding the comparison with the IBGE combinations, Fig. 10 shows the maximum and 

minimum coordinate differences ([X,Y,Z]DGFI – [X,Y,Z]IBGE) for the GPS weeks 1600 to 1640 

(IBGE combinations for the weeks 1618 to 1633 were not delivered). This comparison is 

carried out with the final coordinate values; no transformation is applied here. The largest 

discrepancies (up to 1,6 cm) occurred in weeks 1614 to 1617. For the combinations computed 

after week 1634, the discrepancies are smaller (less than 1 mm) than the estimated station 

position precision (Fig. 9). A description about the IBGE combination strategy (Costa, Silva 

2009) is available at ftp://geoftp.ibge.gov.br/SIRGAS. 

 

Fig. 10. Maximum and minimum coordinate differences [X,Y,Z]DGFI – [X,Y,Z]IBGE for GPS weeks 1600 to 1640 

(IBGE combinations for weeks 1618 to 1633 were not delivered). 

ftp://geoftp.ibge.gov.br/SIRGAS
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5. Replacement of the IGS05 reference frame by the IGS08 reference frame 

Since GPS stations included in the ITRF solutions do not present a homogenous performance 

and precision, the IGS periodically selects a set of globally distributed, stable GPS sites to be 

used as the reference frame for the computation of the IGS final products (i.e. satellite orbits, 

satellite clock estimations, Earth orientation parameters, etc.). The main selection criteria are 

the station performance, track record, monumentation, co-location with other geodetic space 

techniques, and geographical distribution (http://igscb.jpl.nasa.gov/ network/refframe.html). 

These so-called IGS reference stations are in principle minimally constrained to the current 

ITRF and their coordinate sets are internally more consistent than the original ITRF 

coordinates. It is expected that the network (frame) composed by the IGS reference stations is 

completely equivalent to the ITRF in orientation, translation and scale. In this way, the IGS 

final products can still be considered to be nominally in the current ITRF (Kouba 2009). Table 

4 summarizes the different references frames used by the IGS since 1994. 

Table 4. Reference frames used by the IGS since 1994. 

Period of utilization ITRF 
IGS 

reference 
frame 

Main characteristics Documentation 

1994-01-02 (week 0730) to 
1994-12-31 (week 0781) 

ITRF92   [IGSMAIL-0421] 

1995-01-01 (week 0782) to 
1996-01-29 (week 0859) 

ITRF93   [IGSMAIL-0824] 

1996-01-30 (week 0860) to 
1998-02-28 (week 0946) 

ITRF94   [IGSMAIL-1391] 

1998-03-01 (week 0947) to 
1999-07-31 (week 1020) 

ITRF96   [IGSMAIL-1838] 

1999-08-01 (week 1021) to 
2000-06-10 (week 1065) 

ITRF97   [IGSMAIL-2373] 

2000-06-11 (week 1066) to 
2001-12-01 (week 1142) 

ITRF97 IGS97 To ensure a better internal consistency of the 
IGS products.  
The underlying reference frame is still ITRF97. 
Users can continue using ITRF97 station 
positions without problem.  
This change should not have any effect on the 
IGS products in terms of translation-, rotation- 
or scale-changes. 
Selection of 51 reference stations. 
Station positions and coordinates: IGS 
cumulative solution for week 1046 minimally 
constrained to the ITRF97 values. 

[IGSMAIL-2899] 
[IGSMAIL-2904] 

2001-12-02 (week 1143) to 
2004-01-03 (week 1252) 

ITRF2000 IGS00 54 reference stations, IGS cumulative solution 
for week 1131 minimally constrained to the 
ITRF2000 values. 

[IGSMAIL-3605] 

2004-01-04 (week 1253) to 
2006-11-04 (week 1399) 

ITRF2000 IGb00 
(improved 
IGS00) 

106 reference stations, IGS cumulative 
solution for week 1232 minimally constrained 
to the ITRF2000 values. 

[IGSMAIL-4748] 

2006-11-05 (week 1400) to 
2011-04-16 (week 1631) 

ITRF2005 IGS05 132 reference stations, parallel processing 
using absolute and relative phase centre 
corrections for weeks 1325 to 1364. 
Transformation parameters between ITRF2005 
and IGS05 reflect the effect of the relative to 
absolute phase centre calibration change. 

[IGSMAIL-5438] 
[IGSMAIL-5447] 
[IGSMAIL-5455] 

2011-04-17 (week 1632) … ITRF2008 IGS08 232 stations, 91 of them are core stations. 
Absolute corrections for the antenna phase 
center variations (IGS network reprocessing 
based on IGS05), with additional site-specific 
corrections due to calibration updates. 
Transformation parameters between ITRF2008 
and IGS08 are zero.  
Differences between IGS08 and ITRF2008 
coordinates are station-specific and they 
reflect antenna calibration updates. 

[IGSMAIL-6354] 
[IGSMAIL-6355] 
[IGSMAIL-6356] 

http://igscb.jpl.nasa.gov/%20network/refframe.html
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One exception is the ITRF2005 (Altamimi et al. 2005) and the corresponding IGS05 reference 

frame, since the IGS05 coordinates are computed with absolute corrections for the antenna 

phase centre variations (model igs05.atx, http://igscb.jpl.nasa.gov/igscb/ station/ general/), 

while the ITRF2005 coordinates are based on relative corrections (model igs_01.atx) (Ferland 

2006). This produces changes of several millimetres in the station positions, making ITRF2005 

and IGS05 inconsistent with each other, especially in the scale factor (mainly due to the station 

height changes). In April 2011, the IGS introduced a new reference frame closely related to 

ITRF2008 (Altamimi et al. 2011). It is called IGS08 and must be used in combination with an 

updated set of satellite and ground antenna calibrations, the model igs08.atx. The change from 

(IGS05 + igs05.atx) to (IGS08 + igs08.atx) became effective in GPS week 1632 (2011-04-17).  

The analysis of the SIRGAS reference frame as a regional densification of the ITRF is based 

on the IGS final products. Consequently, the SIRGAS weekly solutions are given in the same 

reference frame applied by the IGS for the calculation of its products; namely, the IGS05 

until week 1631 and the IGS08 since week 1632. Here it should be mentioned that the 

former SIRGAS weekly solutions from GPS week 1042 to 1399 using relative antenna phase 

centre corrections and referring to different ITRF or IGS reference frames were reprocessed 

using the igs05.atx model and the IGS05 frame (Seemüller et al. 2011).   

According to the [IGSMAIL-6354], the switch to the IGS08 reference frame has two main 

consequences on the station positions:  

a) Systematic effects due to the ITRF2005 and ITRF2008 datum changes, and 

b) Station-dependent effects due to antenna calibration updates. 

In the first case, “the scale difference between IGS05 and IGS08 (due to the ITRF2005 to 

ITRF2008 datum shift) will cause a mean decrease of station heights by ~6 mm. The Z 

translation will accentuate this effect in the Southern hemisphere and attenuate it in the 

Northern hemisphere. The Z translation will also cause positive North shifts, especially at low 

latitudes” (citation taken from [IGSMAIL-6354]). Table 5 and Fig. 11 show coordinate changes 

at the SIRGAS-CON stations due to the replacement of the IGS05 frame by the IGS08. 

Table 5. Coordinate changes of the SIRGAS-CON stations due to the  

replacement of the IGS05 frame by the IGS08 in GPS week 1632. 

 N [mm] E [mm] h [mm] 

Min 0,0 -1,7 -12,0 

Max 5,6 1,5 -1,0 

Mean ± RMS 3,9 ± 1,2 -0,3 ± 0,7 -6,1 ± 3,1 

Regarding the additional coordinate changes caused by antenna calibration updates, Table 6 

summarizes the SIRGAS-CON stations having a GNSS antenna, whose phase centre 

corrections were modified by more than ±1 mm. 

Changes described in Tables 5 and 6, as well as in Fig. 11 have an impact for SIRGAS users. 

However, this impact is much smaller than those caused by the switch from relative to 

absolute phase centre corrections in November, 2006. In applications of high-precision 

http://igscb.jpl.nasa.gov/igscb/%20station/%20general/
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requiring a long-term consistency with the IGS08 (+ igs08.atx) frame, the reprocessing of all 

old data in the new framework is necessary. 

 

  

Fig. 11. Horizontal and vertical coordinate changes of the SIRGAS-CON stations due to the 

replacement of the IGS05 frame by the IGS08 in GPS week 1632. 

Table 6. Antenna calibration updates affecting SIRGAS-CON stations  
(differences larger than ±1 mm between the models igs05.atx and the igs08.atx). 

Antenna SIRGAS-CON station 

ASH700936D_M    SNOW ANTC, AUTF, COPO, COYQ, IGM1, IQQE, LHCL, PARC, VALP 

ASH701945C_M    NONE CHPI 

ASH701945E_M    NONE BOGT, PIE1 

ASH701945E_M    SNOW APTO, BQLA, IBAG, MEDE 

LEIAX1202GG     NONE ILHA, UYMO, UYRO 

TPSCR3_GGD      CONE CONZ 

TPSCR3_GGD      NONE UNSA 

6. Multi-year solution SIR11P01 for the SIRGAS reference frame 

DGFI as the IGS RNAAC SIR, yearly computes a cumulative solution containing all available 

weekly solutions delivered by the SIRGAS analysis centres. These cumulative solutions 

(Table 7) include those models, standards, and strategies widely applied at the time in which 

they were computed and cover different time spans depending on the availability of the 

weekly solutions. In this report, the computation of the multi-year solution SIR11P01 is 

described. It includes all the weekly solutions provided by the SIRGAS analysis centres from 

2000-01-02 (GPS week 1043) to 2011-04-16 (GPS week 1631), when the IGS08 reference 

frame was introduced.  
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Table 7. Multi-year solutions computed by the IGS RNAAC SIR for the SIRGAS reference frame 
(Seemüller et al. 2010, modified). 

Solution 
No. 

Stations 
ITRF PCC* Data start Data end Reference 

DGF01P01 48 ITRF97, 2000.0 Rel 1996-06-30 2001-04-14 Seemüller et al. 2002 

DGF02P01 53 ITRF2000, 2000.0 Rel 1996-06-30 2002-07-31 Seemüller, Drewes 2002 

DGF04P01 69 ITRF2000, 2003.0 Rel 1996-06-30 2004-07-31 Seemüller et al. 2004 

DGF05P01 95 ITRF2000, 2004.0 Rel 1996-06-30 2005-09-17 Seemüller 2005 

DGF06P01 96 ITRF2000, 2004.0 Rel 1996-06-30 2006-06-17 Seemüller 2009 

DGF07P03 106 IGS05, 2004.5 Abs 2002, 01/05-2005, 2006, 01/08-2007  Seemüller et al. 2007 

DGF08P01 126 IGS05, 2004.5 Abs 2002-01-02 2008-03-31 Seemüller et al. 2008 

SIR09P01 128 IGS05, 2005.0 Abs 2000-01-02 2009-01-03 Seemüller et al. 2009 

SIR10P01 183 ITRF2008, 2005.0 Abs 2000-01-02 2010-06-05 Seemüller et al. 2010 

SIR11P01 230 ITRF2008, 2005.0 Abs 2000-01-02 2011-04-16 This report 

*Antenna phase centre corrections. 

Since the switch to IGS08 reference frame causes a discontinuity of some millimetres in the 

station position time series (see Section 5), this solution is the last one that can be computed 

with the available data. A new multi-year solution of the SIRGAS reference frame demands the 

re-processing of all previous weekly solutions using the IGS08 frame and the phase centre 

correction model igs08.atx. For that, it is necessary to wait until the IGS has generated the 

corresponding IGS08-related products (e.g. satellite orbits, EOPs, terrestrial reference station 

positions, etc.). Under this consideration, this solution includes all SIRGAS stations operating 

more than one year (instead of two years as usual), in order to have a preliminary estimation 

of their velocities. This is the main reason because the precision of this solution is a little 

worse than those of the former ones (Table 8).  

The SIR11P01 solution was computed following the procedure described in Seemüller et al. 

2011. The main parts of the analysis are: 

a) Recovery of unconstrained (free) normal equations from the weekly solutions stored 

in SINEX format. This includes a comparison of the station information with the log 

files in order to review/correct possible equipment inconsistencies or erroneous 

antenna eccentricities. So, the input data for computation of the cumulative solution 

are unconstrained (non-deformed) normal equations and correct station information. 

b) Computation of time series and time series analysis to identify outliers and 

discontinuities in station positions (see grey arrows in Fig. 12). In this case, the weekly 

normal equations are solved separately applying no-net-rotation (NNR) and no-net-

translation (NNT) conditions with respect to ITRF2008. To generate residual position 

time series, the weekly solutions are transformed to an a-priori SIRGAS reference 

frame (i.e. the actual SIRGAS reference frame SIR10P01, Seemüller et al. 2010) by a 

7-parameter similarity transformation. The residual time series of station positions are 

analysed and the detected discontinuities and outliers are taken into account for the 

computation of the new multi-year solution. The thresholds for outliers are defined by 

±15 mm for North and East and ±30 mm for height (about fourfold the mean RMS). If 

outliers appear sporadically (without pattern), the station is reduced from the normal 

equation for the corresponding week. If outliers correspond to a discontinuity, a new 
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position is set up for the station. Annex 1 presents the discontinuities detected in this 

computation. Changes produced by the earthquakes in Chile (February 2010) and Baja 

California (April 2010) (Sánchez et al. 2011a) are excluded of these computations, 

because the corresponding post-seismic station movements occur very quickly and 

their modelling by means of constant velocities is unreliable (see Section 7).  

c) Combination of weekly normal equations (NEQ) to compute the SIRGAS reference 

frame (see blue arrows in Fig. 12). The weekly normal equations are combined to a 

multi-year solution setting up station velocities. The estimated velocities represent 

linear station position variations only. Seasonal signals (e.g. loading) are not 

considered up to now. The geodetic datum is realized by applying NNR and NNT 

conditions with respect to the ITRF2008 using a set of reliable stations for datum 

realization (Fig. 13). After solving the first SIRGAS reference frame, step (b) and (c) 

are iterated: new station position residual time series are generated by transforming 

the weekly solutions to the computed SIRGAS reference frame. Discontinuity and 

outlier detection is repeated and the new information is introduced into the 

computation of a refined reference frame.  

 

Fig. 12. Processing strategy for the computation of the SIRGAS reference frame  

(taken form Seemüller et al. 2010). 

The final coordinates and velocities (Annex 1, Fig. 13 and 14) contained in the multi-year 

solution SIR11P01 refer to the ITRF2008, epoch 2005.0. It includes 230 stations with 269 

occupations (due to the discontinuities summarized in Annex 1). It is well known, that the 

formal errors (included in the SINEX file) estimated in the GPS observation analysis are too 

small because physical correlations between the GPS observations are not well known and 

thus not considered. In addition, the stochastic model of the weekly solutions is not 

homogeneous: before week 1495 each station is included once (DGFI was the only one 

processing centre) and afterwards, each station is included as many times as processing 
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centres are computing it, i.e. the standard deviations of the coordinates are overestimated 

by a factor of about √ (number of processing centres including each station). Since these 

two aspects are until now omitted in our computations, standard deviations for station 

positions and velocities are derived from the residual position time series and not from the 

SINEX file. According to this, the precision of the SIR11P01 solution was estimated to be 

±1,0 mm (horizontal) and ±2,4 mm (vertical) for the station positions, and ±0,7 mm/a 

(horizontal) and ±1,1 mm/a (vertical) for the constant velocities (Table 8). 

To evaluate the consistency of the SIR11P01 solution with the ITRF2008, positions and 

velocities of those stations that were not used as fiducial points are compared. Results show 

mean discrepancies (offsets) under the millimetre level (Table 9). 

 
Fig. 13. Horizontal velocities of the SIR11P01 multi-year solution.  

Velocities of ITRF2008 stations are included for comparison. 



 

- 20 - 

 

 

 
Fig. 14. Vertical velocities of the SIR11P01 multi-year solution.  

Velocities of ITRF2008 stations are included for comparison. 

 
Table 8. Precision estimates for station positions and  

velocities computed within the multi-year solution SIR11P01. 

Standard 
deviation in 

Min Max Mean ± RMS 
Standard 
deviation in 

Min Max Mean ± RMS 

X [mm] 0,3 3,9 1,0 ± 0,7 N [mm] 0,4 3,5 1,2 ± 0,8 

Y [mm] 0,3 6,3 1,7 ± 1,2 E [mm] 0,5 3,7 1,4 ± 0,9 

Z [mm] 0,3 3,2 0,8 ± 0,6 h [mm] 0,8 6,9 2,3 ± 1,2 

vX [mm/a] 0,2 1,1 0,3 ± 0,0 vN [mm/a] 0,3 1,7 1,1 ± 0,3 

vY [mm/a] 0,2 1,8 0,4 ± 0,1 vE [mm/a] 0,4 2,0 1,0 ± 0,4 

vZ [mm/a] 0,1 0,8 0,3 ± 0,0 vh [mm/a] 0,8 2,6 1,6 ± 0,4 
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Table 9. Comparison of the different SIRGAS-CON multi-year solutions with the ITRF2008 
(Seemüller et al. 2010, modified). 

 

The SIR11P01 multi-year solution is available at www.sirgas.org through the following files: 

- SIR11P01.CRD: station positions 

- SIR11P01.VEL: station velocities 

- SIR11P01.SNX: SINEX file 

- SIR11P01.PDF: residual time series  

Please note that station positions included in SINEX file refer to the individual mean epoch of 

the total time span included for each station (see section "SOLUTION/EPOCHS"). Station 

positions included in Annex 2 and in the coordinate file are expressed at the epoch 2005.0. 

Additionally, as mentioned above, the standard deviations included in the SINEX file are not 

reliable. Realistic precision estimations are included together with the coordinates in Annex 2 

as well as in the SIRGAS web site. 

7. Analysis of non-linear station position variations 

Usually, cumulative (multi-year) solutions of any terrestrial reference frame (including 

SIRGAS) take into consideration constant velocities only (linear coordinate changes). This 

presents the following main drawbacks:  

a) Constant velocities are highly dependent on the considered time period. As an 

example, Fig. 15 shows absolute and relative time series for the vertical component 

at the SIRGAS-CON station BOGA (Bogotá, Colombia). In the previous SIRGAS multi-

year solutions, the analysis of the time series made evident a change in the linear 

trend of the vertical component in June 2004. Consequently, a discontinuity was set 

up for the stations and two different sets of velocities were estimated, namely:  

from February 2000 to June 2004: -0,0419 m/a, and  

from June 2004 to December 2008: -0,0612 m/a.  

http://www.sirgas.org/
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Now, the time series are longer, and they show a long-term periodic variation with a 

half-period of about 8 years, which can be misinterpreted as a change of the vertical 

velocity trend of the station. A computation including all available data (February 

2000 to April 2011) provides a velocity estimate of -0,0503 m/a; this differs by more 

than 1 cm/a from the previous results. According to this, the reliability of the position 

variation estimates can be improved only, if longer time series are available for the 

computations. 

 
Fig. 15. Station position time series of BOGA (vertical component). 

b) Most of the SIRGAS-CON stations present significant seasonal position variations, 

which are omitted when constant velocities are computed. These variations can reach 

several centimetres (up to 6 cm in the vertical component), especially in the 

Amazonas region (Fig. 16 and 17). To increase the reliability and long-term stability 

of SIRGAS as reference frame, it is necessary to analyse and model the seasonal 

variations within the reference frame computation. 

 
Fig. 16. Seasonal variations at selected 

SIRGAS-CON stations. 

 

Fig. 17. SIRGAS-CON stations with seasonal 

movements with amplitude larger than 2 cm. 
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c) Deformation of the reference frame due to seismic events. The western part of the 

SIRGAS region, i.e. the plate boundary zone between the Pacific, Cocos, and Nazca 

plates in the West, and the North American, Caribbean, and South American plates in 

the East, is an extremely active seismic area. The frequent occurrence of earthquakes 

causes episodic station movements (Table 10), which influence the long-term stability 

of the SIRGAS frame. Earthquakes of big magnitudes generate not only jumps in the 

position of the reference stations, but also change their “normal” movement 

(constant velocities). As an example, Fig. 18 compares the constant velocities 

computed for the Southern SIRGAS-CON stations before and after the earthquake 

occurred in Chile on 2010-02-27. The post-seismic velocities should be understood as 

preliminary, because they are computed using one year of observations only. To 

improve their reliability, it is necessary to include at least one more year of 

measurements and to reprocess those weekly solutions referring to the IGS05 (before 

GPS week 1631), in order to get homogeneous weekly normal equations related to 

the IGS08 frame. 

d) An additional drawback is related to the modelling of a non-linear station movement 

after an earthquake. In this case, the post-seismic period is usually cut into short time 

intervals Ti to represent that movement by a sequence of constant velocities Vi. In 

this way, the transformation of the station positions before and after the seismic event 

is based on the sum of all the intervals (X = [Vi*Ti]). This approximation 

considerably decreases the reliability of the reference frame, especially when the post-

seismic movements occur very quickly. Fig. 16 shows the post-seismic time series for 

the East component at the stations ANTC, CONZ, MZAS, and VALP. The station 

positions are changing very quickly and a representation through constant velocities 

would imply the definition of too small time intervals (some weeks). Since this 

estimation is not reliable, velocities for the mentioned stations cannot be computed. 

 

Table 10. Seismic events with high impact in the SIRGAS frame  

since 2000 (Sánchez et al. 2011a, modified). 
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Fig. 18. Comparison of pre-seismic and post-seismic (constant) velocities one year after the 

earthquake on 2010-02-27 in Chile (velocities for ANTC, CONZ, MZAS and VALP are intentionally 

not included). 

 
Fig. 19. Post-seismic time series for the East component at selected SIRGAS-CON stations.  

Relative values with respect to constant velocities are presented. 
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Annex 1. Discontinuities identified in the station position time series 

within the computation of SIR11P01. 
 

Station ID-SNX Start End Comments 

AREQ 42202M005 A 0001 2000-01-02 2001-06-22 Arequipa earthquake (7,2) 

AREQ 42202M005 A 0005 2002-08-27 2007-12-01 Cable change 

AREQ 42202M005 A 0006 2007-12-02 2011-04-16 - 

BDOS 43401M001 A 0002 2005-06-05 2007-12-01 Martinique earthquake (7,4) 

BDOS 43401M001 A 0003 2007-12-02 2011-04-16 - 

BOGT 41901M001 A 0003 2002-05-23 2005-07-15 Antenna swap 

BOGT 41901M001 A 0005 2005-0717 2011-04-16 - 

BRAZ 41606M001 A 0001 2000-01-02 2007-03-11 Antenna & receiver change 

BRAZ 41606M001 A 0002 2007-03-18 2011-04-16 - 

BRMU 42501S004 A 0001 2000-01-02 2003-02-12 Antenna & receiver change 

BRMU 42501S004 A 0002 2003-03-12 2009-04-11 Jump 

BRMU 42501S004 A 0003 2009-04-13 2011-04-16 - 

CBSB 80402M001 A 0001 2005-11-19 2008-11-07 Jump 

CBSB 80402M001 A 0002 2008-11-27 2011-04-16 - 

CONZ 41719M002 A 0001 2002-06-10 2005-05-13 Antenna & receiver change 

CONZ 41719M002 A 0002 2005-05-18 2010-02-26 - 

COPO 41714S001 A 0001 2002-07-01 2006-04-28 Copiapo earthquake (5,3) 

COPO 41714S001 A 0002 2006-05-03 2007-10-01 Antenna & receiver change 

COPO 41714S001 A 0003 2008-07-05 2010-02-26 - 

CORD 41511M001 A 0001 2000-01-02 2004-04-04 Receiver change 

CORD 41511M001 A 0002 2005-03-03 2006-05-02 - 

COYQ 41715S001 A 0001 2000-01-02 2004-09-07 Jump 

COYQ 41715S001 A 0002 2007-12-06 2011-04-16 - 

CRAT 41619M001 A 0001 2001-08-20 2005-06-29 Jump 

CRAT 41619M001 A 0002 2005-08-16 2008-01-26 Jump 

CRAT 41619M001 A 0003 2008-03-07 2010-12-28 - 

CRO1 43201M001 A 0002 2000-01-02 2005-01-19 Antenna & receiver change 

CRO1 43201M001 A 0003 2005-08-04 2011-04-16 - 

CUIB 41603M001 A 0001 2000-01-21 2007-04-07 Antenna & receiver change 

CUIB 41603M001 A 0002 2007-04-10 2011-04-16 - 

ETCG 40602M001 A 0001 2003-02-11 2009-01-09 Costa Rica earthquake (6,1) 

ETCG 40602M001 A 0002 2009-01-11 2011-04-16 - 

GLPS 42005M002 A 0001 2003-01-07 2008-02-26 Receiver change 

GLPS 42005M002 A 0002 2008-10-11 2010-12-28 - 

INEG 40507M001 A 0003 2000-05-05 2001-05-05 Antenna swap 

INEG 40507M001 A 0004 2001-05-06 2002-03-22 Jump 

INEG 40507M001 A 0005 2004-11-15 2011-04-16 - 

KOUR 97301M210 A 0001 2000-01-02 2002-01-16 Antenna change 

KOUR 97301M210 A 0002 2002-02-06 2006-07-01 Jump 

KOUR 97301M210 A 0003 2006-07-02 2011-04-16 - 
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MANA 41201S001 A 0001 2000-05-14 2004-10-10 Managua earthquake (6,9) 

MANA 41201S001 A 0002 2004-10-11 2011-04-16 - 

MARA 42402M001 A 0001 2000-01-21 2008-05-26 Antenna change 

MARA 42402M001 A 0002 2008-07-16 2011-04-16 - 

MDO1 40442M012 A 0001 2000-01-02 2004-12-02 Receiver change 

MDO1 40442M012 A 0003 2004-12-08 2011-04-16 - 

NEIA 41620M002 A 0001 2006-01-05 2009-11-16 Antenna & receiver change 

NEIA 41620M002 A 0002 2010-01-02 2011-04-16 - 

ONRJ 41635M001 A 0001 2007-04-01 2009-10-10 Antenna & receiver change 

ONRJ 41635M001 A 0002 2009-10-11 2011-04-16 - 

PARC 41716S001 A 0001 2000-01-02 2001-10-03 Antenna swap 

PARC 41716S001 A 0002 2001-12-12 2011-04-16 - 

PIE1 40456M001 A 0003 2000-01-02 2006-09-04 Antenna change 

PIE1 40456M001 A 0005 2007-01-24 2011-04-16 - 

PMB1 43702S001 A 0001 2005-12-30 2007-10-21 Antenna & receiver change 

PMB1 43702S001 A 0002 2007-12-19 2011-04-16 - 

RIOP 42006M001 A 0001 2000-01-02 2001-12-28 Antenna & receiver change 

RIOP 42006M001 A 0002 2007-04-29 2011-04-16 - 

SSIA 41401S001 A 0003 2001-02-13 2003-12-28 Jump 

SSIA 41401S001 A 0004 2005-06-16 2010-07-25 - 

TUCU 41520S001 A 0001 2002-01-01 2006-01-23 Change of trend in vertical velocity 

TUCU 41520S001 A 0002 2006-08-31 2011-04-16 - 

UBAT 41627M001 A 0001 2006-01-02 2008-04-11 Jump 

UBAT 41627M001 A 0002 2008-04-14 2009-09-06 - 

UCOR 41502M001 A 0001 2004-04-05 2008-11-13 Antenna & receiver change 

UCOR 41502M001 A 0002 2008-11-23 2010-02-26 - 

UNSA 41514M001 A 0001 2000-01-02 2008-07-27 Antenna swap 

UNSA 41514M001 A 0002 2008-07-28 2010-02-26 - 

UYMO 42301M001 A 0001 2007-11-01 2009-03-07 Antenna change 

UYMO 42301M001 A 0002 2009-03-08 2010-02-26 - 

VIVI 41931S001 A 0001 2005-09-18 2007-12-28 Jump 

VIVI 41931S001 A 0002 2008-01-24 2011-03-03 - 

VIVI 41931S001 A 0001 2005-09-18 2007-12-28 Jump 

VIVI 41931S001 A 0002 2008-01-24 2011-03-03 - 
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Annex 2. Station positions and velocities of the SIR11P01 multi-year solution, 

epoch 2005.0.  

Geocentric Cartesian coordinates [X, Y, Z] are converted to ellipsoidal coordinates [, , h] using the GRS80 ellipsoid. 
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