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Fig 1  SIRGAS vTEC for day 205  2005  0 UT  creating a realistic but controlled ionospheric scenario, Fig.1. SIRGAS vTEC for day 205, 2005, 0 UT. 
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 0, , ; ,...,L L L LvTEC f t x x  .                                                                                                (2) The error assessment is performed for 5 levels of solar activity: low (F10 7 = 70 SFU)  interme 0, , ; ,...,L L L L nvTEC f t x x  .                                                                                                (2) The error assessment is performed for 5 levels of solar activity: low (F10.7 = 70 SFU), interme
SFU)  i t di t  (130 SFU)  i t di t hi h (160 SFU)  d hi h (190 SFU)  f  th  12The parameters, ix , 0,...,i n , and the satellite + receiver inter-frequency biases (IFB), R S    , are SFU), intermediate (130 SFU), intermediate-high (160 SFU), and high (190 SFU); for the 12The parameters, ix , 0,...,i n , and the satellite  receiver inter frequency biases (IFB), R S   , are 

ti t d f  th  GNSS b ti  b d  th  f ll i  ti  f b ti  year; and for 11 heights of the ionospheric layer, from 350 km to 550 km, with steps of 25 km. estimated from the GNSS observations based on the following equation of observation: year; and for 11 heights of the ionospheric layer, from 350 km to 550 km, with steps of 25 km. 
Th  lt  f thi  t  i d i  Fi  4 d 5     sec ;L z h f t x x                                                                           (3) The results of this assessment are summarized in Figs. 4 and 5.    0sec , , ; ,...,I I L L L L L nL z h f t x x       ,                                                                    (3) 

where L  is the dual-frequency GNSS ionospheric observable and v  is the associated observational error  where IL  is the dual-frequency GNSS ionospheric observable and Iv  is the associated observational error. 
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3  N i l i l ti  Fi  2  G t  f  th  i l i l ti  3. Numerical simulation Fig. 2. Geometry for the numerical simulation. 
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5. Assessment of the in the vTEC and IFB estimation errors 5 ssess e t o t e t e C a d est at o e o s
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km). 0.5The inclusion of additional unknowns reduces (w r t  the previous experiment) the standard deviations of the ) The inclusion of additional unknowns reduces (w.r.t. the previous experiment) the standard deviations of the 
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monthfor 500 km. Nevertheless, this fact does not imply any improvement in the estimation of the LvTEC : in fact, , p y y p L ,
 h  results significantly greater than in the previous experiment (Fig  7)  

Fig  6  Uppe figurer: TEC  estimated from the Eq  (6 c) 
 Lh  results significantly greater than in the previous experiment (Fig. 7). 
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Fig  8  Left: ( )h  (points) and ( )h   (bars) estimated from the Eq  (6 d) for h = 350  400  Fig. 8. Left: ( )Lh  (points) and ( )Lh   (bars) estimated from the Eq. (6.d) for Lh = 350, 400, 
450 and 500 km, for high solar activity and March; right: variation with the solar activity and month of  , g y ; g y

 h   (TECu)   ,0Lh   (TECu). 
 
It should be noted that: i) the ionospheric layer height  h  that cancels the systematic bias in the It should be noted that: i) the ionospheric layer height, ,0Lh , that cancels the systematic bias in the 
vTEC estimation is, in general, different from the ionospheric layer height, 0'Lh , that cancels the 
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the condition ,0'Lh = 0 and ,0Lh  that fulfils the condition  ,0Lh = 0; right: sensitivity a given solar activity and month can be selected to reduce  
(TECu/km) of the systematic bias ( )h  to the ionospheric layer height  h ;  
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to zero the average of the vTEC bias for a given attitudinal (TECu/km) of the systematic bias ( )Lh  to the ionospheric layer height, Lh ;  to zero the average of the vTEC bias for a given attitudinal 
range  but still remains a latitudinal varying residual error  range, but still remains a latitudinal varying residual error. 


