Assessment of SIRGAS Ionospheric Maps errors based on a

numerical simulation

Claudio Brunini，Emilio Camilion，Francisco Azpilicueta
1 Facultad de Ciencias Astronómicas y Geofisicas
Universidad Nacional de La Plata
and CONICET，Argentina
claudiobrunin＠yahoo．com

Intraduction

As responsible of the International Terrestrial Reference
Frame（ITFF）densification in Latin America，SRGGAS
Isiseme Sistem de Refferencia Geocentrico poraralas Amemicias） manages a continuuusly operational GNSS network with
more than 200 receivers．SIRGAS uses this network to compute regional maps of vertical Total Electron Conter TECC）Fifi．I）that are released to the community through
The SIRGAS web page（www siras．orad． As other similar products $($ e．．a．Global computed by the Interational）GNSS Senvice），SRRGAS aps she inososhere is represented by one mode in which
 geometrical mapping tunction that relates the vericical
the slant TEC．
This contribution
associaited to the thin layerer ionospshericic mode．The w
 creating a realisicic but controlled ionospheric scenario，
evaluates the errors that are produced when
the model is used to reproduce those
inososhereic scenarios．

Fig． 1 SIRGAS vTEC for day 205，2005， 0 U．

Thin layer ionospheric model
The whole ionosphere is represented by one spherical layer of infinitesimal thickness ata fixed height，h_{L} ． The slant TEC（（TEC）along a given satellite－－t－receiver Ine－of－sight（LOS）is related to the vertical TEC $\operatorname{sTEC}=\sec \bar{z}_{L}\left(h_{L}\right) \cdot v T E C_{L}$,
where $z_{L}\left(h_{L}\right)$ is the LOS z_{E} zenith angle at the IPP and $\sec z_{L}\left(h_{L}\right)=\left[1-\left(r_{E} \sin z_{E}\right)^{2} /\left(r_{E}+h_{L}\right)^{2-1 / 2}\right.$ $z_{z_{E}}$ is the zenith angle at the obseving point and r_{E} the Earth＇s radius）is the geometrical mapping function）． The vTEC is parameterized as a function of time，t ，and the geographic latitude，φ_{L} ，and ongitude，λ_{1} ，of ${ }^{v T E C_{L}}=f_{L}\left(t, \varphi_{L}, \lambda_{L} ; \alpha_{0}, \ldots, x_{n}\right)$.
The parameters，$x_{,} i=0, \ldots, n$ ，and the satellite + receiver inter－frequency b biases（IFB），$\beta=\beta_{R}+\beta_{s}$ ，are estimaied from the GNSS obsenvations based on the forlowing equation of obsenvation
$L_{t}+v_{t}=\sec z_{L}\left(h_{L}\right) \cdot f_{L}\left(t, \varphi_{L}, \lambda_{L} ; x_{0}, \ldots, x_{n}\right)+\beta$ ，
L_{I} is the dual－frequency GNSS ionospheric observable and v_{I} is the associated observational error

Numerical simulation
 The vTEC distribution in the SIRGAS region is characterized by large horizontal fradients caused by the Appleton Anomaly（Fig．3）． These e rardients are particularly noticeable during daxtime a direction．
 In order to study the errors caused by these gradients in the thin layer ionospheric model，the
 following fictitious scenario is considered（Fig．2）：
 －A GNSS satellie moving along the 300010 meridian；
 merid
 An array of 7 GNSS recievers lang the same $G \equiv$ Plane of the figur
 20° ；

ne Ne Quick electron density model is used to simulate the electron density distribution The NeQuick electron denssity mooet is used to simuate the electron density distrnbution．
For this particular geometry NeQuick reduces to a two－dimensional tunction，$N_{\text {evep }}(r, \varphi)$ ，so tha

$$
\begin{aligned}
& \nu T E C_{L}=\cos z_{L}\left(h_{L}\right) \cdot \operatorname{sTEC},
\end{aligned}
$$

Fig． $3 . L$ atitudinal
cuts of the electron cuts of the election
alensity distribtion
computed with the computed with the
NeQuick model NeQuick model
allongthe 300
meit merician，from 100
to 1000 km of height，at 14LT，for
March（MMRR，
September（SEP）， September（SEP），
June（（UUN）and
ne and for low（LSAA）
and high h（HA）
solara activity， solar a activy，it the simulated with the
Nealich eleftron
density model（the solid $i n=$ at 67720 km
represents the ionosspheric cayer
350 km ．

Assessment of the mapping function error

The VTEC error due to the use of the mapping function is．
 The systematic component of this error is characterizized by the average of al the observed $\operatorname{LOS}\left(z_{\text {f }}\right.$ from 0° ± 900 from the 7 GNSS receivers：
nd the varing component is characterized by the average of the（absolute value）deviaitions．
 ar 11 heits of the ionospheric layer from 350 km to 550 km ，with steps of 25 km The results of this assessment are summarized in Figs． 4 and 5.

$$
\begin{aligned}
& \text { 飣IIIIIILEE 飫LIIIIIIII } \\
& \text { CTITITIII }
\end{aligned}
$$

Fig．4．Varaition with the height of the ionospheric layer，$h_{t}\left(k m\right.$ ）of $\left\langle\varepsilon\left(h_{t}\right)\right\rangle$（points）and $\delta \varepsilon\left(h_{t}\right)($（barss），in ECU，for 1 ow（ $F 10.7=70$ SFu）and high（ $F 10.7=190 \mathrm{SFL} /$ solar activity，and for March（03）and June（ 06 ）． The systemaicic effect of the mapping function error，ie．．$\left\langle\varepsilon\left(h_{t}\right)\right\rangle$, cancels at an ionospheric layer height h rat varies with the solar activity and montt

5．Assessment of the in the VIEC and IFB estimation errors
The $\varepsilon\left(h_{L}\right)$ eror discussed in Section 4 propagates to the unknowns of Eq．（3）when their values are of the v TEC，function and the $I F B, \beta$ ．
In order to study the error r ropagagtion，a Legendre＇s functions expansion is used to represent the altuturinal

$$
v T E C=f\left(\varphi ; x_{0, \ldots}, \ldots, x_{n}\right)=\sum_{i=1}^{12} x_{1} \cdot P_{t, 0}(\sin \varphi) .
$$

The first experiment consists in to fit by Least Squares the expansion（6．a）to the NeQuick vTEC．

$$
v T E C=\sum_{t=0}^{n} x_{1} \cdot P_{1,0}(\sin \varphi)=\int_{r_{t}+h_{h}}^{r_{t}+t_{2}} N\left(r, \varphi_{L}\right) \cdot d r+v .
$$

The standard deviation of the residuals，$\sigma_{x} \ll \pm 0.1$ TECU，confirms a good quality of $f t$ The second experiment consists in to fit the expansion（ $6 . a)$ to the NeQuick STEC using the mapping
function：

The standard deviation of the residuals increases（w．rt．the previous experiment）to $\sigma_{v}= \pm 5.3$ TECu for $h_{L}=$

The last experiment consists in to a ad the $1 F B, \beta$ ，to the $E q$ ．（6．c）and to estimate their values together with the expansion coefficients
 for 500 km ．Nevertheless，this fact does not imply any improvement ti t the estimation of the $\mathrm{vTE} C_{l}:$ in fact， $\left\langle\varepsilon\left(h_{h}\right)\right\rangle$ results significantly greater than in the previous experiment $($ Fig． 7 ．

Since the N Neauick s TEC is not affected by $D C B$ ，any deviaition from zero of the estimated $\beta\left(h_{t}\right)$
unknowns of Eq．（6．d）must be interreted as an error．$\Delta \beta\left(h_{1}\right)$ ．due to the propogation of the map Inknowns of Eq．（6．d）must tbe interpreted as an error，$\Delta \beta\left(h_{L}\right)$ ，due to the propagation of the mapping
cotion netertic component of this eroro is
cierized by the average of al the obsened $\operatorname{LOS}\left(z_{E}\right.$ from 0°
at the varing component is characierzas

$$
\begin{equation*}
\delta \Delta \beta\left(h_{t}\right)=\frac{10}{7_{p_{t}}=\frac{1}{n}=-200}\left|\Delta \beta\left(h_{L}\right)-\left\langle\Delta \beta\left(h_{L}\right)\right\rangle\right| . \tag{7.b}
\end{equation*}
$$

Both estimates are shown in Fig． 8 ．

 450 and 500 km, for high solar activity and March：right：variation with the solar activity and month of $\delta \Delta \beta\left(h_{L, 0}\right)(T E C U)$ ．
It should be noted that：i）the ionospheric layer height，$h_{L, 0}$ ，that cancels the systematic bias in the VTEC estimation is，in generala，different from the ionospheric layer height，$h_{L, 0}^{\prime}$ ，that cancels the systematic bias in the IFBB estimation（Figi 9, ，efft）and ii）the simultaneous stimation of T TEC and
$D C B$ makes the systematic vTEC bias more sensitive（W．．t．t the estimation of vTEC without DCB）to DCB makes the systemantic vTEC bias more se．
ionososheric layer height changes F Fig．．．Fight）．

Fig．o．．Left：difference $\Delta h_{L, 0}=h_{L, 0}^{\prime}-h_{L, 0}(\mathrm{~km})$ befween the ionospheric layer heights，$h_{L, 0}^{\prime}$ that fufilis he condition $\left\langle\Delta \beta\left\langle h_{L, 0}^{\prime}\right\rangle\right\rangle=0$ and $h_{L, 0}$ that fuflis the condition $\left\langle\varepsilon\left(h_{L .0}\right)\right\rangle=0 ;$ ；ight：sensitivity TECukm）of the systematic bias $\left\langle\varepsilon\left(h_{L}\right)\right\rangle$ to the ionospheric layer height，h^{\prime}

Fig． 6 ．Uppe figurer：vTEC C_{t} estimated from the Eq．（6．0） for $h_{L}=350,400,450$ and 500 km （curves of dififerent
colours）and Neauick $v T E C$（black curve）in TECu，for high 5 solar activity and March；middle：variation with the height of the ionospheric layer，$h_{L}(k m)$ of $\left\langle\varepsilon\left(h_{L}\right)\right\rangle$ （points）and $\delta \varepsilon\left(h_{h}\right)$（bars），in TECu，for high solar activity and month of $\delta \varepsilon\left(h_{t}\right)$ in TECU．

Fig． 7. Upper figure：vTECL estimated from the Eq．（6．0）
for $h_{L}=350,400,450$ and 500 km （ Curves of different

 （points）and $\delta \delta\left(h_{L}\right)$（bars，in in T CCu，for high solar activity and March．

[^0]
[^0]: Concusions
 The height of oionsosheric laver is a key parameter of the
 thin layer ionospheric model．There is not any fixed height hat reduces to zero the effects of the mapping function error on the vTCC and DCB estimation．Afxixed height for
 range，but still remains a latitudinal varying residual error．

