

Preliminary tests on BVRN new representation through Normal Heights based on GGMs and discrete GNSS observations

E. Nicacio & R. Dalazoana & <u>S. R. C. De Freitas</u>

Aguascalientes, Mexico – November 11th, 2018

Introduction

Brazilian Vertical Reference Network (BVRN)

Source: Nicacio e Dalazoana (2018) and IBGE (2018).

Introduction

BVRN historical evolution milestones

Nicacio & Dalazoana & De Freitas

Source: Luz (2007), IBGE (2011), Nicacio (2017) and IBGE (2018).

SIRGAS 2018 Symposium

Introduction

35°W

5°S

10°S

15°S

20°S

25°S

30°S

35°W

Scale: 1:20,000,000

250

45°W

55°W

50°W

500 750 1000 km

40°W

40°W

- BVRN current adjustment (released in July 30th, 2018)

Preliminary tests on BVRN normal heights main objectives

- 1. Perform comparisons of height anomalies provided from GNSS/BM information (h and H^N data available) with results calculated from GGMs with proven highlighted performance in previous studies/adjustment all along the study area;
- 2. Identify possible gains/losses with new representation of BVRN benchmarks in terms of normal heights;
- 3. Provide IBGE with relevant inconsistencies observed during preliminary tests, in order to enable futher investigation.

Nicacio & Dalazoana & De Freitas

SIRGAS 2018 Symposium

Study area

- Brazilian territory;
- 1162 stations of BVRN with connection with IBGE's SAT-GPS network – <u>GNSS/BM</u> <u>stations</u>
 - <u>1130 GNSS/BM stations</u> *stable* stations and linked to DVB-I
 - > 32 under further investigation or linked to DVB-S
 - Shapefile format [IBGE's BDG] easier handling;
 - Carry information of both elipsoidal [h] and normal heights [H^N];
 - Non-uniform distribution of stations acceptable for these preliminary tests.

GGMs employed

Selection

- Main combined GGMs since EGM2008;
- Proven to be highlights on metric geopotential functionals representation on the study area;
- Single geopotential functional: <u>height anomaly</u>.

GGM	Harmonic Degree			
EGM2008	2190	-	720	
EIGEN-6C4	2190	-	720	
SGG-UGM-I	-	2159	720	
GOCO05C	-	-	720	
XGM2016	-	-	719	

• <u>Acquisition</u>

SPGG v2.1 [pointwise approach]

(See: https://euriconicacio.github.io/spgg/help/)

		Single-Point GEM Genera	tor - v 2.1	_ ×
Extract Generation	About			
Model and funct Directory Longtime Model Model from Serie Topography relate Celestial Object M Topography	s ad Model	Other options	Functional	Points selection Open No points loaded. Truncation Gentle cut 9999 ÷ Max degree 9999 ÷
Reference System Tide System Zero Degree Term	Radius GM Flat Omega use model's system Yes			Calculation Test Connection Clear Generate extracts
Processing Estimated Time: Elapsed Time: Progress:		0%		Results Open results Close

Nicacio & Dalazoana & De Freitas Source: Nicacio (2016), Nicacio et al. (2018) and Nicacio e Dalazoana (2017a).

Height anomalies modelling

Previous BVRN adjusment: normal- – orthometric heights [H^{NOrt}]

- Existence of normal-geoid height (η) concept: $h \cong H^{NOrt} + \eta$
- Normal-geoid heights (η) could be better modelled by height anomalies (ζ) or geoid heights (N), depending on the study área;
- <u>Current BVRN adjusment</u>: normal heights [H^N]
 - Relation between elipsoidal heights (*h*) and normal heights (H^N) given by height anomalies (ζ): $h \cong H^N + \zeta$

- Featherstone (2001), Sánchez (2016), and Nicacio and Dalazoana (2018):
 - In order to mitigate aditive errors inherent to the processing approach and to the obtaintion method of the GGMs, use of relative approach instead of the absolute one;
 - Absolute approach: $h \cong H^N + \zeta$
 - Relative approach: $\Delta h = \Delta H^N + \Delta \zeta \implies \zeta_P = \zeta_0 + h_P h_0 H_P^N + H_0^N$
 - Prior results confirm this is the most advisable alternative these days, specially under the aspect of vertical reference systems consecution.
- Permanent tide systems compatibilization [Ekman (1989), Mäkinen and Ihde (2006) and Tenzer et al. (2011)]:

$$h_{mean-tide} = h_{tide-free} - \left\{ (1+k-h) \left[-0.198 \times \left(\frac{3}{2} sen^2 \phi - \frac{1}{2} \right) \right] \right\}$$

Evaluation criteria

 Optimal configuration (OC) – model with minimum mean difference for the whole set of points

$$\begin{cases} [\zeta_P]_{EGM2008} \\ [\zeta_P]_{EIGEN-6C4} \\ [\zeta_P]_{SGG-UGM-1} \Longrightarrow \min \theta_P = \left| \left| \zeta_P^{ref} \right| - \left| \zeta_P^{calc} \right| \right| \\ [\zeta_P]_{GOC005C} \\ [\zeta_P]_{XGM2016} \end{cases}$$

 Global evaluation (Brazil) and comparison with results for previous BVRN BMs representation [Nicacio et al. (2018) and Nicacio and Dalazoana (2017)].

Results and discussions

Differences statistics, in meters, between GNSS/BM solutions and GGM height anomalies modelling for current BVRN adjustment.

Nicacio & Dalazoana & De Freitas

Results and discussions

			DEGREE/ORDER AND FUNCTIONAL			
	GGM	DIF	2190		720	
			Geoid	Height Anom	Geoid	Height Anom
		MIN	0,0000	0,0000	0,0000	0,0000
	EGM2008	MEAN	0,1741	0,1712	0,1807	0,1773
		MAX	2,9766	2,9651	2,9292	2,9107
		RMS	0,2399	0,2354	0,2385	0,2337
<u>п</u>	EIGEN-6C4	MIN	0,0000	0,0000	0,0000	0,0000
2		MEAN	0,1548	0,1521	0,1631	0,1612
'n		MAX	1,1824	1,1463	1,1595	1,1208
۰.		RMS	0,1637	0,1613	0,1665	0,1632
	GOCO05C	MIN	-	-	0,0000	0,0000
V		MEAN	-	-	0,1528	0,1489
		MAX	-	-	1,1345	1,1166
		RMS	-	-	0,1554	0,1504
	XGM2016	MIN	-	-	0,0000	0,0000
		MEAN	-	-	0,1496	0,1461
	XGIII2010	MAX	-	-	0,9738	0,9096
		RMS	-	-	0,1518	0,1480

	GGM	DIE	DEGREE/ORDER			
		GOIM	DIF	2190	2159	720/719
			MIN	0,0000	-	0,0000
		EGM2008	MEAN	0,1568	-	0,1618
			MAX	1,2202	-	1,2252
			RMS	0,1652	-	0,1668
			MIN	0,0000	-	0,0000
		FIGEN-6C4	MEAN	0,1461	-	0,1565
	Ħ	EIGEN-004	MAX	0,9097	-	1,0437
	Ě		RMS	0,1429	-	0,1546
	just	SGG-UGM-1	MIN	-	0,0000	0,0000
	Ad		MEAN	-	0,1458	0,1531
	018		MAX	-	0,8938	0,9416
	5		RMS	-	0,1430	0,1480
		6000150	MIN	-	-	0,0000
			MEAN	-	-	0,1420
		0000000	MAX	-	-	0,8598
			RMS	-	-	0,1332
		XGM2016	MIN	-	-	0,0000
			MEAN	-	-	0,1386
			MAX	-	-	0,8410
			RMS	-	-	0,1332
0	Optimal					

configuration

SIRGAS 2018 Symposium

Results and discussions

Previous BVRN adjustment

Current BVRN adjustment

Mean differences obtainded through different GGMs

- To sum up, results obtained with the GGMs tested presented significant gains in accuracy from previous to current BVRN adjustments.
- Optimal configuration kept (GGM XGM2016, height anomaly functional, d/o 719), with a $\sim 1 \ cm$ gain in representation accuracy.

SIRGAS 2018 Symposium

Conclusions and outlook

• Usage of the relative approach for handling GGMs is recommended;

- Relevant increase in the accuracy of altimetric representation with the adoption of normal heights, mainly when comparing mean discrepancies obtained from optimal configurations in each benchmark, for each height representation – both normal-orthometric and normal heights;
- Despite some point-wise and local inconsistencies, which are already under further investigation, the mean positive results are justified by a closer alignment to physical meaning when using normal heights;
- Furthermore, it must be emphasized the efforts made by IBGE in order to provide large scale products for the community with outstanding quality, clearly aiming at an advance towards a national alignment with the state-of-art, definitions and recommendations of the International Association of Geodesy (IAG);
- Validity for GNSS/levelling tests on Brazilian territory is still remarkable;
- Results limited to input information accuracy [h and H^N].

References

Acknowledgments

- Brazilian Army DCT / DSG;
- PPGCG/UFPR;
- Co-authors:
 - Prof.^a Dr.^a Regiane Dalazoana (UFPR); and
 - Prof. Dr. Silvio Rogério Correia de Freitas (SIRGAS GT-III & UFPR);
- IBGE team responsible for current BVRN adjustment, led by Dr. Roberto Luz.
- Local organizing Committee, SIRGAS 2018 Symposium.

¡Muchas gracias!

Cap QEM/Cart MSc Eurico Nicacio [euriconicaciojr@gmail.com]

Prof.^a Dr.^a Regiane Dalazoana [regiane@ufpr.br]

Prof. Dr. Silvio de Freitas [sfreitas@ufpr.br]

