

Evaluación de Modelos Globales del Geopotencial combinados modernos en el territorio brasileño

Eurico Nicacio & Regiane Dalazoana

Contexto

- Uno de los principales desafíos de la Geodesia es el modelado del campo de la gravedad terrestre - se realizan esfuerzos para ello desde mediados del siglo XVII;
- ▶ En los últimos años, con la popularización de técnicas espaciales, hubo un relevante marco en su interpretación y un impulso en la demanda por modelos globales adecuados y fidedignos para las más variadas finalidades;
- Se han desarrollado nuevas técnicas para obtener información del campo de la gravedad a partir de misiones satelitales.
 - Modelos Globales del Geopotencial [MGGs]

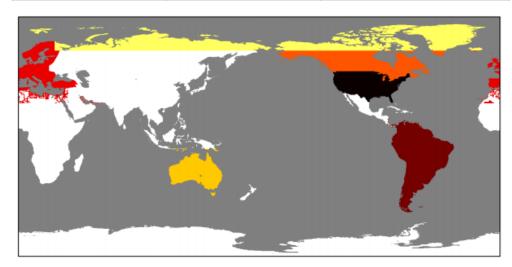
Nicacio & Dalazoana Simposio SIRGAS 2017

- Modelos Globales del Geopotencial [MGGs]
 - Gestión y provisión: ICGEM (163+ modelos);

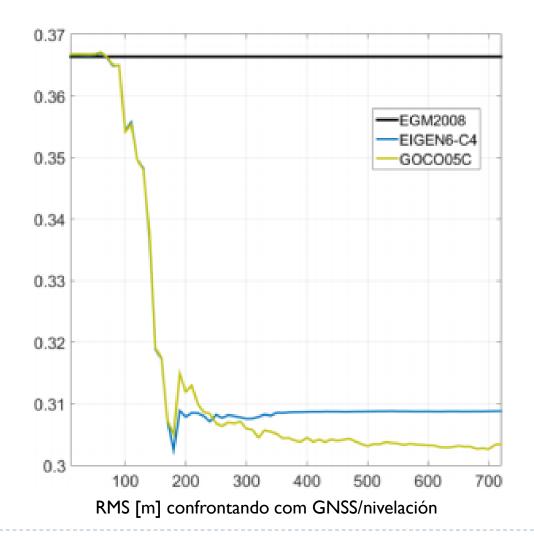
Nr	Model	Year	Degree	Data	References	Download	Calculate	Show	DOI
163	GO_CONS_GCF_2_SPW_R5	2017	330	S(GOCE)	A. Gatti et al. 2016	gfc zip	Calculate	Show	√
162	GAO2012	2012	360	A, G, S(GOCE), S(GRACE)	Demianov, G. et al, 2012	gfc zip	Calculate	Show	✓
161	XGM2016	2017	719	A, G, S(GOCO05s)	Pail, R. et al, 2017	gfc zip	Calculate	Show	✓
160	Tongji-Grace02s	2017	180	S(Grace)	Chen, Q. et al, 2016	gfc zip	Calculate	Show	✓
159	NULP-02s	2017	250	S(Goce)	A.N. Marchenko et al, 2016	gfc zip	Calculate	Show	✓
158	HUST-Grace2016s	2016	160	S(Grace)	Zhou, H. et al, 2016	gfc zip	Calculate	Show	✓

- Atención especial para MGG combinados [A, G, S];
- ► En especial: GOCO05c y XGM2016
 - Singular método de procesamiento + Grandes perspectivas de aplicación en América del Sur

MGG GOCO05c



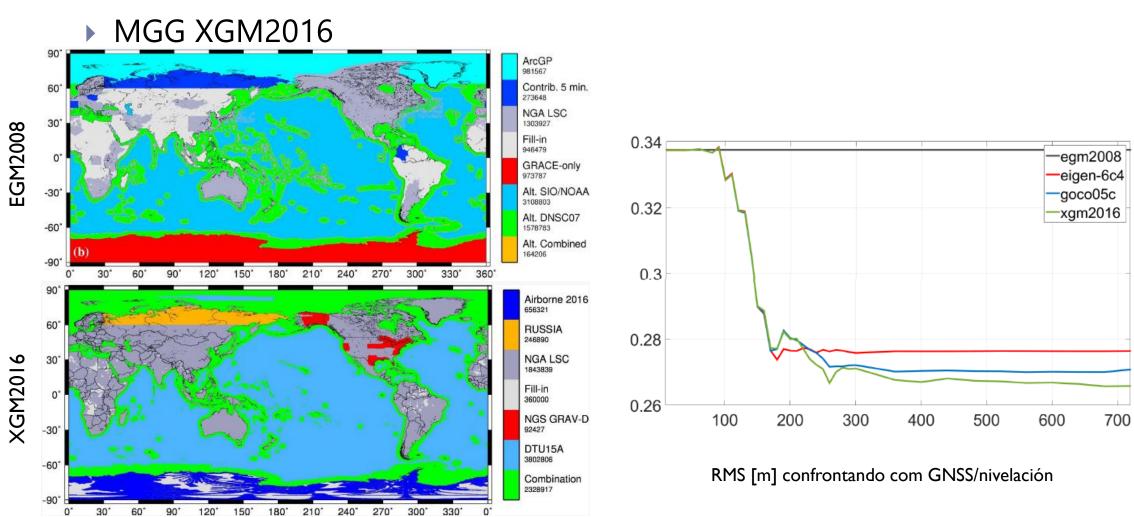
- Desrrollable hasta g/o 720;
- Desde el lanzamiento del EGM2008, se muestra como innovador:
 - Totalmente independiente del EGM2008, con datos de todo el período de la misión GOCE;
 - Primer modelo que hace uso de ponderación por ubicación durante la utilización de soluciones de misiones gravimétricas, aerotransportadas y terrestres;
 - Grandes perspectivas para América del Sur.



▶ MGG GOCO05c

Region	Source	Number of grid cells		
Arctic	ArcGP Group	44522 (4.3 %)		
Australia	Curtin University	11170 (1.1 %)		
Canada	NRCan	19259 (1.9 %)		
Europe	IfE Hanover	15625 (1.5 %)		
Oceans	DTU Space	691818 (66.7 %)		
South America	NGA	24818 (2.4 %)		
USA	NGA	12895 (1.2 %)		

Disponibilidad de datos de anomalía de la gravedad

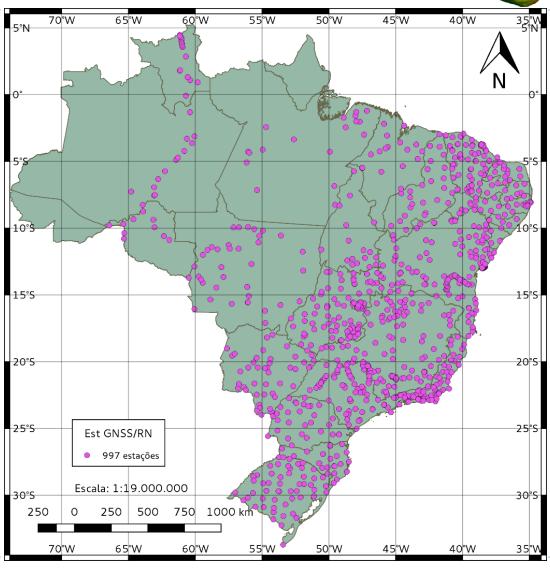


MGG XGM2016

- Desarrollable hasta g/o 719;
- Precursor del venidero MGG EGM2020;
- Se muestra aún más innovador:
 - También totalmente independiente del EGM2008, con datos de todo el período de la misión GOCE;
 - También hace uso de ponderación por ubicación durante la utilización de soluciones de misiones gravimétricas, aerotransportadas y terrestres;
 - Nueva grilla 15' x 15' de datos de anomalia de la gravedad em tierra;
 - ▶ Grandes perspectivas para regiones anteriormente tratadas con *fill-in* y relativas al EGM2020.

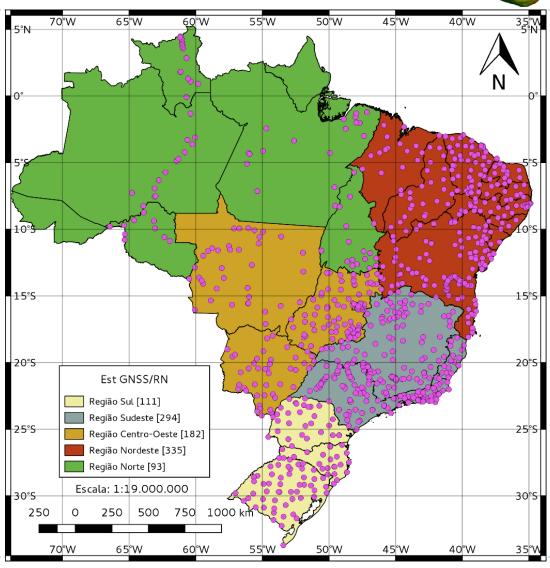
Comparativo de disponibilidad de datos de anomalía de la gravedad

Objectivo


Evaluar cuantitativamente los MGGs combinados existentes en la actualidad para modelado de la altura normal-geoidal a lo largo de todo el territorio brasileño, comparando sus soluciones con soluciones GNSS/nivelación en toda el área de estudio.

 $[EGM2008, EIGEN6C4] \leftrightarrow [GOCO05C, XGM2016]$

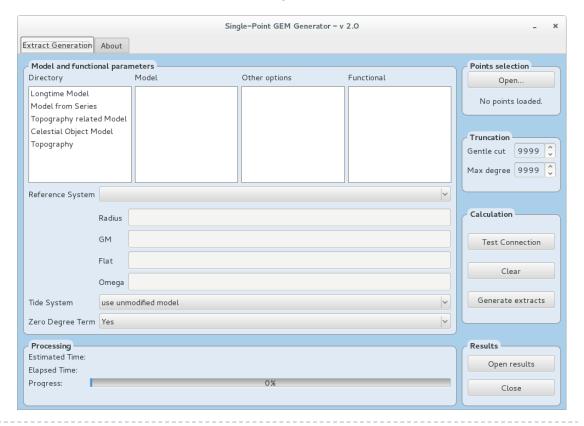
Área de estudio


- Territorio brasileño;
- ▶ 1015 estaciones de la red SAT-GPS/IBGE com conexión com la RAFB – estaciones GNSS/RN
 - 997 vinculadas al DVB-I *
 - ▶ 18 vinculadas al DVB-S
 - Obtención en shp [INDE] manipulación y metadatos;
 - Portadoras de información de altura elipsoidal [h] y altura normal-ortométrica $[H^{NOTt}]$;
 - Distribución no uniforme aceptable para la evaluación primaria que se propone.

Área de estudio

- Territorio brasileño;
- División de las 997 estaciones según regiones geográficas:
 - ▶ 111 estaciones en la región Sur;
 - 294 estaciones en la región Sudeste;
 - ▶ 182 estaciones en la región Centro-Oeste;
 - > 335 estaciones en la región Nordeste;
 - > 93 estaciones en la región Norte.

MGGs empleados


Selección

- Principales MGGs combinados de la actualidad (desde EGM2008);
- Diferentes grados de desarrollo;
- Diferentes funcionales del geopotencial.

MGG	Grados de desarrollo						
EGM2008	2190	720	360				
EIGEN-6C4	2190	720	360				
GOCO05C	-	720	360				
XGM2016	-	719	360				

Obtención

SPGG v2.0 [extractos puntuales]

Modelado de la altura normal-geoidal

- ightharpoonup RAFB: alturas normales-ortométricas [H^{NOrt}]
- Altura normal-geoidal $[\eta]$:
 - Método absoluto (tradicional): $h \cong H^{NOrt} + \eta$
- La altura normal-geoidal η puede ser mejor modelada por la propia altura geoidal N o por la anomalia de altura ζ , dependiendo del área que se estudia.
- Ferreira et al. (2011): según diferentes aproximaciones para la separación entre el geoide y el cuasigeoide, la altura normal-geoidal es ligeramente mejor modelada por la anomalia de altura que por la altura geoidal, en un estudio de caso aplicado a estaciones de la región Sur de Brasil.

Modelado de la altura normal-geoidal

- Featherstone (2001), Sánchez (2016) y Nicacio y Dalazoana (2017b):
 - Eliminación de errores aditivos inherentes al sistema de procesamiento y al modo de obtención de los MGG;
 - Método relativo: $\Delta h = \Delta H^{NOrt} + \Delta \eta \implies \eta_P = \eta_0 + h_P h_0 H_P^{NOrt} + H_0^{NOrt}$
 - Indicativos de ser la forma más adecuada para manipulación de MGGs y para el modelado deseado.
- Compatibilización del Sistema de Marea Permanente [Ekman (1989), Mäkinen y Ihde (2006) y Tenzer et al. (2011)].

Criterios de evaluación

Modelo más adecuado para el modelado de la altura normal-geoidal

$$\begin{cases} [\eta_P]_{EGM2008} \\ [\eta_P]_{EIGEN-6C4} \\ [\eta_P]_{GOC005C} \\ [\eta_P]_{XGM2016} \end{cases} \Rightarrow min \ \theta_P = \left| \left| \eta_P^{ref} \right| - \left| \eta_P^{calc} \right| \right|$$

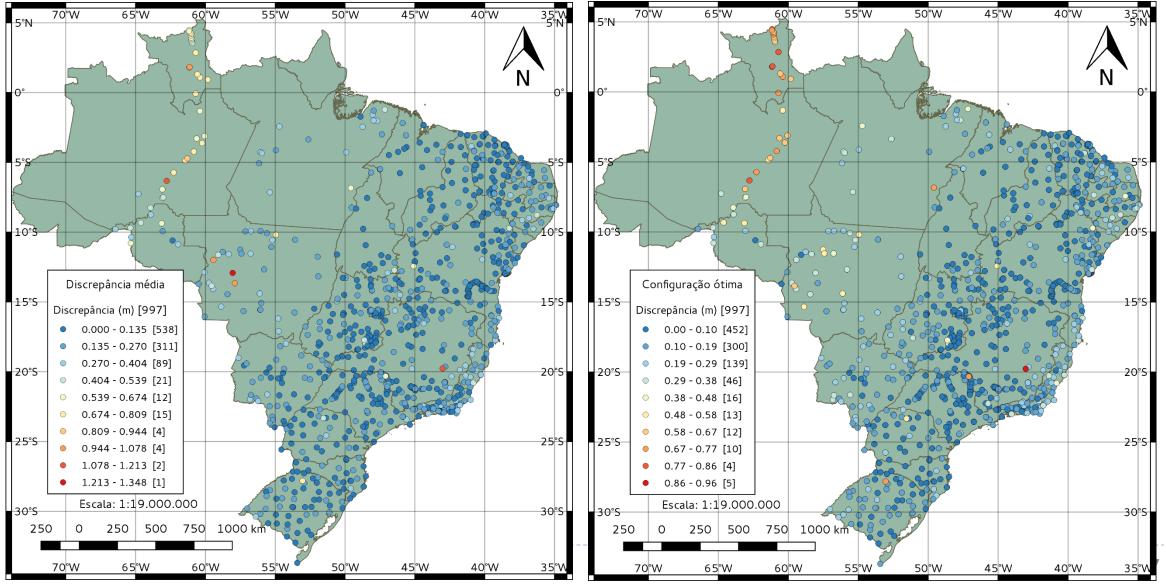
 \blacktriangleright Estándar adoptado para la elección del punto P_0

$$P_0 \Longrightarrow \min \theta_m = \frac{1}{n} \sum_{i=1}^n \theta_i$$

Evaluación global (todo el Brasil) y regional (por región geográfica).

Resultados y Discusiones

		GRAUS DE DESENVOLVIMENTO E FUNCIONAIS DO GEOPOTENCIAL						
MODELO	D DIF	21	90	720		360		
		Alt Geoid	Anom Alt	Alt Geoid	Anom Alt	Alt Geoid	Anom Alt	
	MÍNIMA	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
EGM2008	MÉDIA	0,1741	0,1712	0,1807	0,1773	0,2087	0,2081	
EGWIZOO	MÁXIMA	2,9766	2,9651	2,9292	2,9107	2,5203	2,5009	
	RMS	0,2399	0,2354	0,2385	0,2337	0,2362	0,2328	
	AMINÌM	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
EIGEN-6C4	MÉDIA	0,1548	0,1521	0,1631	0,1612	0,1901	0,1913	
EIGEN-0C4	MÁXIMA	1,1824	1,1463	1,1595	1,1208	1,3147	1,3088	
	RMS	0,1637	0,1613	0,1665	0,1632	0,1723	0,1723	
	MÍNIMA	-	-	0,0000	0,0000	0,0000	0,0000	
GOCO05C	MÉDIA	•	•	0,1528	0,1489	0,1802	0,1800	
GOCOGC	MÁXIMA	•	•	1,1345	1,1166	1,3084	1,3091	
	RMS	•	•	0,1554	0,1504	0,1681	0,1662	
	MÍNIMA	-	-	0,0000	0,0000	0,0000	0,0000	
XGM2016	MÉDIA	-	-	0,1496	0,1461	0.1808	0,1813	
VOINISOTO	MÁXIMA	-	-	0,9738	0,9596	1,3302	1,3221	
	RMS	-	-	0,1518	0,1480	0,1669	0,1662	

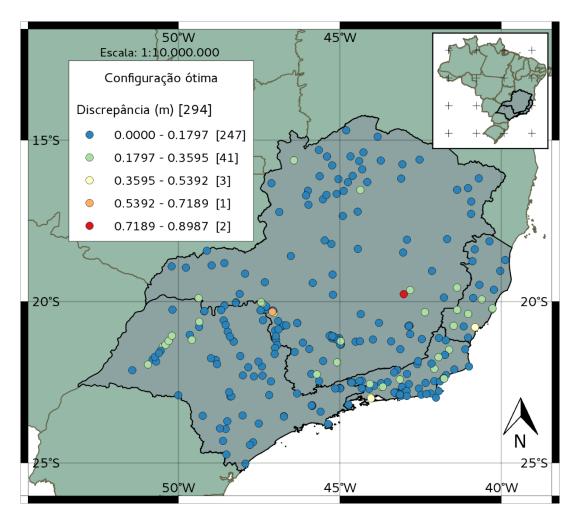

Configuración óptima

Discrepancias, en metros, entre soluciones GNSS/Nivelación y modelado por MGGs en todo el territorio brasileño.

Nicacio & Dalazoana Simposio SIRGAS 2017

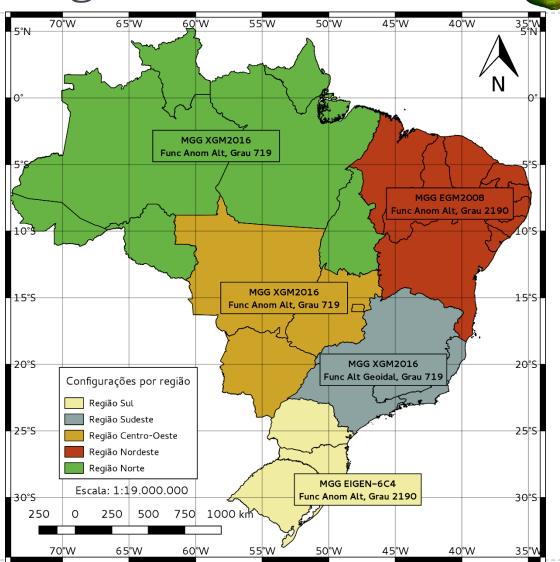
Resultados y Discusiones

Resultados y Discusiones - Nacionales


- Desarrollo hasta grado 360: menos adecuado para modelado [errores de omisión] 3 a 5 cm de diferencia;
- Desarrollo hasta grado 719/720: mejor rendimiento de los MGGs XGM2016 (*) y GOCO05c em relación a EIGEN-6C4 y EGM2008 en ambas funcionales;
 - Configuración óptima nacional: MGG XGM2016, funcional anomalia de altura, grado 719.
- Desarrollo hasta grado 2190: ventaja milimétrica de los MGGs XGM2016 (*) e GOCO05c;
 - Ausencia de modelado entre grados 720 y 2190 para XGM2016 y GOCO05C;
 - Precisión promedia centimétrica de las informaciones altimétricas diferencia no significativa.
- Rendimiento de la funcional anomalía de altura fue superior a la funcional altura geoidal para modelado de la altura normal-geoidal.
- XGM2016 (*) y GOCO05C con rendimiento compatible, compatible, mismo con una gran disparidad de grados de desarrollo.

Resultados y Discusiones - Regionales

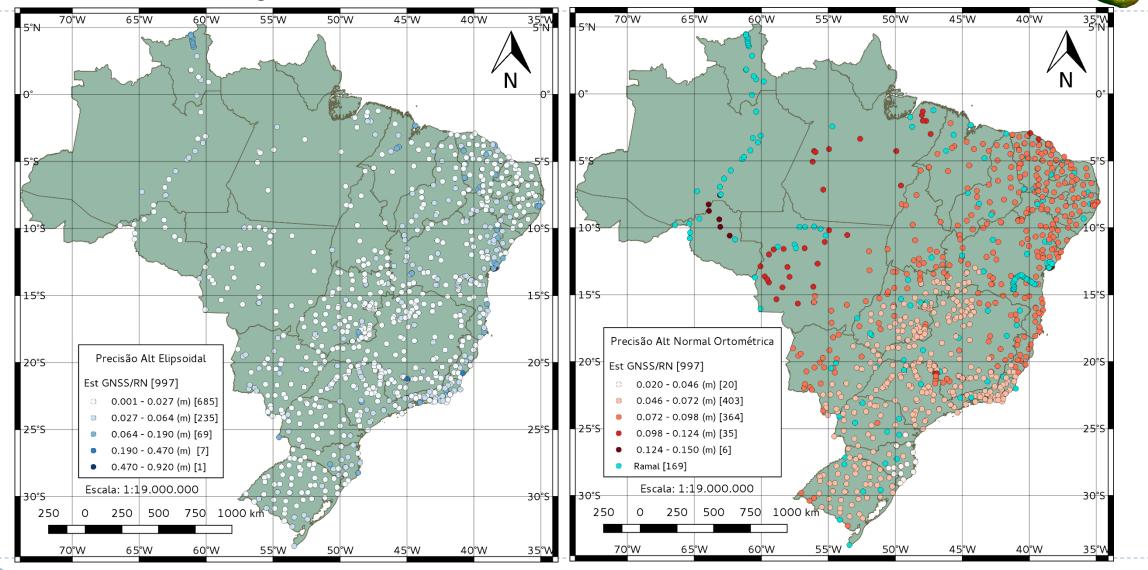
Ex.: Región Sudeste de Brasil


REGIÃO SUDESTE									
		GRAUS DE DESENVOLVIMENTO E FUNCIONAIS DO GEOPOTENCIAL							
MODELO	DIF	21	90	720		360			
		Alt Geoid	Anom Alt	Alt Geoid	Anom Alt	Alt Geoid	Anom Alt		
	MÍNIMA	0,0008	0,0011	0,0000	0,0022	0,0005	0,0007		
EGM2008	MÉDIA	0,1490	0,1484	0,1560	0,1555	0,2026	0,2113		
EGWZ006	MÁXIMA	1,0445	1,0468	0,9412	0,9186	1,3380	1,3538		
	RMS	0,1438	0,1422	0,1489	0,1469	0,1797	0,1790		
	MÍNIMA	0,0001	0,0002	0,0002	0,0003	0,0005	0,0020		
EIGEN-6C4	MÉDIA	0,1167	0,1166	0,1340	0,1355	0,1943	0,2032		
EIGEN-0C4	MÁXIMA	0,9793	0,9934	0,9234	0,9509	1,2969	1,3010		
	RMS	0,1175	0,1193	0,1263	0,1285	0,1665	0,1753		
	MÍNIMA	-	-	0,0006	0,0001	0,0005	0,0001		
GOCO05C	MÉDIA	-	-	0,1063	0,1058	0,1786	0,1865		
GOCOOSC	MÁXIMA	-	-	0,9531	0,9579	1,2763	1,2716		
	RMS	-	-	0,1134	0,1111	0,1652	0,1731		
	MÍNIMA	-	-	0,0003	0,0007	0,0009	0,0003		
XGM2016	MÉDIA	-	-	0,1002	0,1038	0,1815	0,1896		
XGIM2010	MÁXIMA	-	-	0,8987	0,9269	1,2967	1,3031		
	RMS			0,1096	0,1062	0,1626	0,1719		

Nicacio & Dalazoana Simposio SIRGAS 2017

Resultados y Discusiones - Regionales

- Distintas soluciones y modelos según diferentes funcionales;
 - Altura normal-geoidal no es perfectamente modelada según ninguna funcional del geopotencial;
- Rendimientos coherentes con la adición de información y diferente tratamiento de los MGGs modernos;
- Promedio de los desempeños medios por región diferente del promedio nacional;
 - Diferentes muestras;
 - \triangleright Diferentes adopciones de P_0 .



Conclusión y Reflexiones

- Uso del método relativo;
- Se prueba el desempeño superior de los MGG modernos (GOCO05C y XGM2016) en comparación con los demás modelos combinados probados (EGM2008 y EIGEN-6C4) cuando todos se desarrollan hasta el grado 720, su grado máximo, y su teórica igualdad cuando todos son utilizados en sus grados máximos individuales;
- Sus desventajas milimétricas, cuando ocurren, son plenamente justificables por ausencia de modelado debido a la discrepancia entre grados de desarrollo, así como plausible de ser considerada no significativa dada las precisiones altimétricas implicadas;
- Se ratifica el posicionamiento de los MGG combinados más recientes como exponentes en el histórico de desarrollo de modelos de su tipo, con miras a la amplia divulgación de resultados y de potencialidad de uso;
- Combinación de MGGs: XGM2016 hasta grado 719 y EIGEN-6C4 desde grado 719 hasta 2190;
- Expectativa para el MGG EGM2020 [desarrollable hasta g/o 2190];
- \blacktriangleright Estándares y límites con significado físico para la adopción del punto P_0 ;
- Nesultados limitados a la calidad de la información de entrada[$h \in H^{NOrt}$].

Conclusión y Reflexiones

Referencias

Agradecimientos

- Ejército de Brasil DCT / DSG;
- PPGCG/UFPR;
- Prof.^a Dr.^a Regiane Dalazoana (UFPR);
- Prof. Dr. Silvio Rogério Correia de Freitas (SIRGAS GT-III & UFPR);
- Dr. Franz Barthelmes (ICGEM);
- Organizadores Simposio SIRGAS 2017.

¡Muchas gracias!

Cap Ing. Cart. Eurico Nicacio

[euriconicaciojr@gmail.com]

